

INDICE

1) INTRODUCCIÓN:	4
2) MARCO TEÓRICO:	5
2.1 SUPERFICIES DE REFERENCIA EN GEODESIA	5
2.2 ALTURAS ORTOMÉTRICAS	
2.3 ALTURAS ELIPSOIDALES	8
2.4 APLICACIONES AL SISTEMA GPS	9
2.5 MODELOS GEOIDALES	11
2.5.1 - Modelos Geoidales en Uruguay	
2.5.2 - Modelos Geoidales Globales	
2.5.2.1 Modelo EGM-96:	
2.5.2.2. Modelo EGM-2008:	
2.5.2.3. Modelo OSU-91A: 2.5.2.4. Modelo DMA 10*10:	
3) PROCEDIMIENTO:	
3.1 ZONA DE ESTUDIO	
3.2 NIVELACIÓN GEOMÉTRICA	
3.2.1 – Consideraciones:	
3.2.2 – Pre-análisis:	
3.2.3 – Procedimiento en campo:	
3.3 - AJUSTE DE LA RED	
3.3.1 - Playa Pascual	
3.3.2 – Delta Del Tigre	
3.4 - VERIFICACIÓN DEL AJUSTE CON EL PROGRAMA COLUMBUS	
3.5 - RELEVAMIENTO CON GPS	
4) PROCESAMIENTO DE DATOS Y CÁLCULO DE MODELOS	41
4.1- EGM-96	
4.1.1 Diferencias entre cotas oficiales y cotas obtenidas a partir del EGM-96	44
4.1.2 Refinamiento del Modelo EGM-96	
4.1.3 Testeo de los modelos	
4.1.4 Estimación del error en los modelos	
4.1.5 Testeo de desnivetes entre puntos de control	
4.2.1 Diferencias entre cotas oficiales y cotas obtenidas a partir del EGM-08	
4.2.2 Refinamiento del Modelo EGM-08	
4.2.3 Testeo de los modelos	
4.2.4 Estimación del error en los modelos	
4.2.5 Testeo de desniveles entre puntos de control	
4.3- DMA-10x10	
4.3.1 Diferencias entre cotas oficiales y cotas obtenidas a partir del DMA	
4.3.2 Refinamiento del Modelo DMA	
4.3.3 Testeo de los modelos	
4.3.5 Testeo de desniveles entre puntos de control	
4.4- OSU91-A	
4.4.1 Diferencias entre cotas oficiales y cotas obtenidas a partir del OSU91	
4.4.2 Refinamiento del Modelo OSU91	
4.4.3 Testeo de los modelos	
4.4.4 Estimación del error en los modelos	
4.4.5 Testeo de desniveles entre puntos de control	
4.5 – MODELO DEL SGM: URUGEOIDE 2007	
4.5.1 Diferencias entre cotas oficiales y cotas obtenidas a partir del Urugeoie	
4.6 COMPARACIÓN RELATIVA DE LOS MODELOS	84
5) CONCLUSIONES:	85

Estudio y Refinamiento de Modelos Geoidales PROYECTO FINAL

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA DICIEMBRE 2009

6) BIBLIOGRAFIA:	87
ANEXO I	88
(Curvas de Nivel)	88
ANEXO II	89
(SUPERFICIES)	89

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA **DICIEMBRE 2009**

1) INTRODUCCIÓN:

El presente informe constituye la documentación del Proyecto Final de la carrera Agrimensura, y tiene como principales objetivos el realizar un estudio acerca de la compatibilidad de diferentes Modelos Geoidales Globales para la determinación de desniveles y cotas a partir de mediciones realizadas con GPS; y un posterior refinamiento de los mismos destinado a mejorar la precisión obtenida primariamente.

Se optó por este tema en particular debido a que en las diversas áreas de la actividad profesional del Ingeniero Agrimensor, cada vez se hace más necesario el uso de tecnología GPS. Un ejemplo claro de esta situación es el que se da en la zona de estudio, ya que para la misma Obras Sanitarias del Estado (OSE) ha decidido realizar un proyecto para implementación de obras de saneamiento. Debido a que la zona presenta características topográficas particulares como ser la escasa elevación respecto al nivel del mar y la presencia de diferencias de nivel de valores muy bajos (teniendo en cuenta la extensión planimétrica de la zona), se vuelve imprescindible contar con una determinación de desniveles lo más precisa y eficiente posible.

Desde el punto de vista de la eficiencia, no caben dudas que la utilización de equipos GPS es lo más recomendable para este tipo de trabajo, resta entonces determinar si las precisiones alcanzadas se encuentran dentro de los límites de tolerancia admisibles para la determinación de diferencias de niveles.

Paulatinamente se ha ido generalizando el uso de tecnología GPS a medida que se han logrado avances importantes en lo referido a las precisiones alcanzadas, y en especial en aquellas asociadas a la altimetría, que eran las que más restricciones imponían a la hora de elegir al GPS como herramienta de trabajo. Por lo tanto se vuelve imprescindible la compatibilidad de los datos obtenidos a partir de los modelos geoidales actuales con los obtenidos a partir de los modelos clásicos, un claro ejemplo de ello resulta la determinación de desniveles entre los puntos de una red.

Para lograr esta compatibilidad se deben obtener las alturas ortométricas correspondientes, a partir de las alturas elipsoidales obtenidas de las observaciones realizadas con GPS. Es con este fin que se realizaron circuitos cerrados de nivelación geométrica en la zona de estudio, materializando puntos fijos que posteriormente fueron tomados con GPS.

Una vez obtenidos los datos, se trató de compatibilizar las observaciones, es decir a las alturas elipsoídicas obtenidas con GPS, convertirlas en ortométricas a través de diferentes modelos geoidales globales. Los modelos utilizados fueron el EGM-96, el OSU-91A, el EGM-2008, el DMA 10*10 y el adoptado por el Servicio Geográfico Militar que en realidad no es un modelo geoidal global en sí, sino que es un modelo local de transformación de alturas calculado por dicho organismo, y al que de aquí en adelante se denominará SGM para mayor practicidad.

Se realizó un estudio comparativo entre lo obtenido a través de la nivelación y los datos GPS, y se calcularon posteriormente los parámetros correspondientes a un nuevo modelo geoidal local para la zona, mediante el cual se obtuvieron las cotas oficiales de los puntos.

Tutor: Jorge Faure

Estudio y Refinamiento de Modelos Geoidales PROYECTO FINAL

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA **DICIEMBRE 2009**

Finalmente se hizo un análisis de los resultados obtenidos, realizando además un testeo, para una serie de puntos testigos, del comportamiento del modelo calculado.

2) MARCO TEÓRICO:

Para contextualizar este trabajo se ha decidido incluir en este informe una breve introducción al marco teórico en que se encuentra el mismo, para dar así una idea más o menos generalizada de algunos conceptos que resultan fundamentales a la hora de abordar temas como este.

2.1 Superficies de Referencia en Geodesia

Según la definición más generalizada, la Geodesia es la ciencia que tiene como fin principal la determinación de la figura de la Tierra, el posicionamiento de puntos sobre las superficie física terrestre y el estudio del campo de la gravedad externo del planeta.(Benavidez, 2004).

Las superficies de referencia desempeñan un rol fundamental en Geodesia, ya que resultan imprescindibles a la hora de compatibilizar las medidas realizadas, con los modelos matemáticos adoptados.

Para la toma de medidas altimétricas se adopta como superficie de referencia a la denominada superficie de nivel, cuya principal característica es que en cada uno de sus puntos la dirección de la *pesantez* (vertical) es la *normal*. Sobre dicha superficie la pesantez no es constante, sino que crece del Ecuador hacia los Polos. La pesantez depende de la distribución de las masas y de la distribución de las densidades de los materiales. Las alturas de esos puntos sobre esta superficie se denominan cotas.

Existen infinitas superficies de nivel, a la que coincide con los mares en reposo y se prolonga por debajo de los continentes se denomina Geoide (según Listing), sería una superficie de equilibrio bajo la acción de la Fuerza de Atracción Gravitatoria del resto de los puntos de la superficie y del resto del sistema solar, más la acción de la Fuerza Centrífuga ocasionada por la traslación y la rotación terrestre.

Esta definición del geoide no es completamente aplicable principalmente debido, entre otros, al hecho de que la superficie de los océanos es una superficie dinámica en constante cambio. Sin embargo, estos efectos en nivel son generalmente del orden de un metro por lo que, para muchos propósitos, se puede identificar el nivel medio del mar con la superficie geoidal.

Según una definición más generalizada: el geoide es la superficie matemática de la tierra, se define como una superficie equipotencial de la gravedad para un valor especial constante W_0 . (Benavidez, 2004).

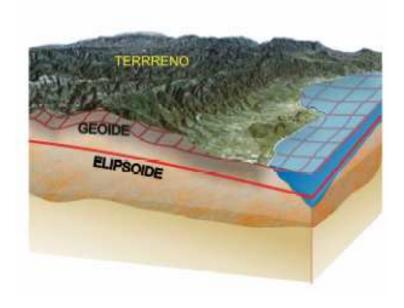
En general se utiliza, como una primera aproximación para esta superficie equipotencial un elipsoide de revolución geocéntrico de la forma:

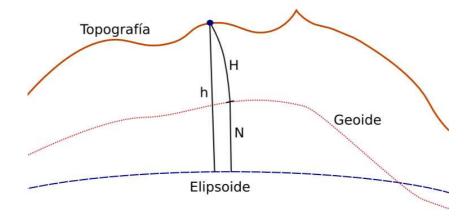
Autores: Jaime Betancur, Antonio Villaluenga

 $\frac{x^2 + y^2}{a^2} + \frac{z^2}{b^2} = 1$ donde a y b, son los semi-ejes mayor y menor respectivamente, de la elipse generatriz.

Si se conocen las distribuciones de las densidades y la distribución de masas, el Campo de la Gravedad se determina unívocamente. Pero determinado campo gravitatorio puede ser consecuencia de distintas distribuciones de masas, por lo tanto el valor de la Fuerza de Gravedad sobre la superficie de la Tierra no determina unívocamente la estructura interior terrestre.

La desigual distribución de las masas continentales y la densidad variable de los materiales que componen el planeta, hacen que el Geoide no sea una superficie regular, con presencia de protuberancias y depresiones.




Fig. 1: Superficies de referencia.

2.2 Alturas Ortométricas

A la cota referida al Geoide se la denomina *altura ortométrica* (H), es por lo tanto, la distancia medida sobre la vertical entre la superficie física de la Tierra y el Geoide.

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA DICIEMBRE 2009

H: altura ortométrica h: altura elipsoidal N: ondulación geoidal.

Fig. 2: Esquema de alturas.

La altura ortométrica se mide a lo largo de la línea de plomada, la cual es una curva tangencial a la dirección de la gravedad en cualquier punto. La línea de plomada no es una línea recta, ya que tiene una leve curvatura y giro, debido a que la dirección de la gravedad varia dependiendo de las características de densidad local.

Para evaluar la altura ortométrica con exactitud es necesario conocer el valor medio de la gravedad a lo largo de la línea de plomada, debido a que esto no es posible, el valor medio de la gravedad tiene que ser estimado de la gravedad observada en la superficie de la Tierra aceptándose alguna hipótesis sobre la distribución topográfica de la masa y densidad.

Para elevar una unidad de peso de una superficie de nivel N_1 a una superficie de nivel N_2 , el trabajo a efectuar es el mismo en todo el recorrido de la superficie de Nivel N_1 . Como la pesantez aumenta sobre N_1 del Ecuador hacia los polos, necesariamente la superficie de nivel N_2 se aproxima a la N_1 del Ecuador hacia los polos, o sea, que la altura ortométrica (H) entre las curvas disminuye hacia los polos.

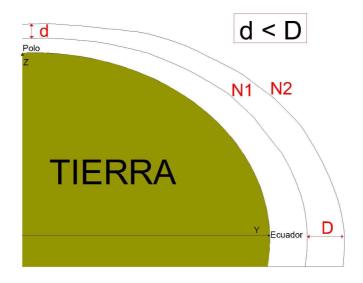


Fig. 3: Variación de la altura ortométrica con la Latitud.

2.3 Alturas elipsoidales

La altura elipsoidal h es la distancia entre el punto P (a posicionar) y el elipsoide, medida a lo largo de la normal al elipsoide. La altura es positiva por encima del elipsoide y negativa por debajo de él.

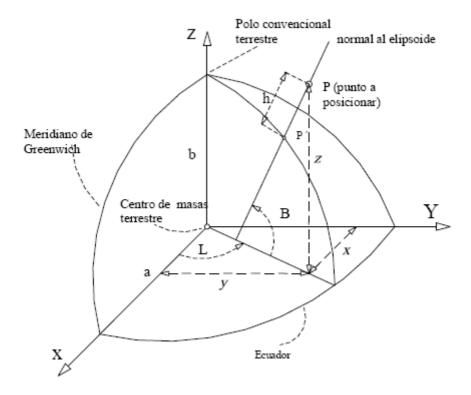


Fig. 4: Representación gráfica de la altura elipsoidal (h).

Estudio y Refinamiento de Modelos Geoidales PROYECTO FINAL

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA DICIEMBRE 2009

El sistema de alturas elipsoidales es definido geométricamente siendo independiente del campo de la gravedad. Globalmente, las alturas elipsoidales son determinadas por métodos satelitales (por ejemplo GPS) con precisiones métricas, mediante observaciones simultáneas y la utilización de modelos geoidales, las diferencias de alturas pueden ser obtenidas, con esta técnica, con una precisión de 1 cm. a 10 cm.

2.4 Aplicaciones al Sistema GPS

Como se mencionó anteriormente las altitudes están referidas al Geoide, una superficie que sigue un comportamiento físico, por lo que si bien no se tiene una expresión matemática exacta que la represente, sí existen aproximaciones.

Las observaciones astronómicas y geodésicas, se efectúan sobre el Geoide y las medidas se refieren a la vertical (dato físico, dirección de la plomada), mientras que para cálculos y proyecciones de puntos del relieve, resulta imprescindible la obtención de una superficie de referencia con una definición matemática sencilla.

En Geodesia se definen modelos, parámetros, constantes, etc., que sirven como base para la descripción de los procesos físicos de la Tierra, los cuales determinan un *Sistema de Referencia*. Los sistemas de referencia no se pueden determinar por mediciones, sino que se definen convencionalmente.

Con el sistema GPS se pueden obtener posiciones precisas tridimensionales referidas al Sistema de Referencia WGS84, que se define:

- Origen O: Centro de masa terrestre, geocentro.
- **Eje Oz**: Pasa por el Polo Convencional Terrestre (época 1984,0)
- **Eje Ox**: Intersección del meridiano origen de las longitudes para la época 1984,0 y el plano del Ecuador.
- *Eje Oy*: Completa el triedro.

- φ: latitud geodésica

- λ: longitud geodésica

- **h:** altura elipsoidal

- **Semieje Mayor:** a = 6378137 m

- Achatamiento: f = 1/298,257223563

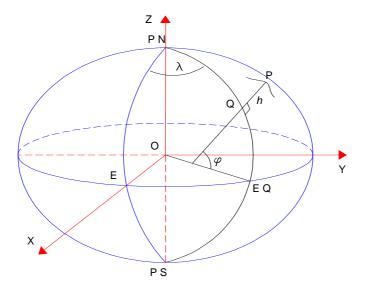


Fig. 5: Elipsoide de revolución asociado, centrado en O y con eje de revolución Oz

La desviación métrica entre el Geoide y el Elipsoide influye en las medidas angulares, a causa del ángulo existente entre la Normal y la Vertical. Para que las observaciones y los cálculos sean homogéneos es necesario que las medidas efectuadas se refieran a la Normal (referida al elipsoide), esto trae un error implícito en la puesta de estación de los aparatos (se orientan según la vertical al Geoide y no según la Normal al Elipsoide, ese ángulo se denomina desviación relativa de la vertical)

Es necesario obtener una expresión que relacione las alturas elipsoídicas (h), obtenidas por el GPS, y las alturas ortométricas (H), que como se mencionó, se miden a lo largo de la línea de la plomada a partir del Geoide. A la diferencia entre el elipsoide y el geoide se la denomina ondulación (N) del Geoide.

Dado la utilidad que tiene el GPS, nace la necesidad de convertir todas las alturas h en H. Considerando la falta de coincidencia entre la normal y la vertical, queda determinada la desviación relativa de la vertical (Φ) como el ángulo determinado entre la normal al elipsoide y la vertical del lugar.

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA **DICIEMBRE 2009**

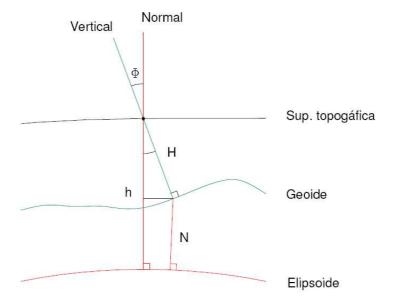


Fig. 6: Desviación relativa de la vertical.

Se puede deducir la expresión de la altura ortométrica:

$$\mathbf{h} = \mathbf{N} + \mathbf{H} * \cos(\phi)$$

En la zona de estudio los valores de la desviación relativa de la vertical son de unos pocos segundos, lo que implica que el valor del coseno tiende a uno, por lo tanto se puede simplificar la expresión.

$$h = N + H$$

Si se dispone de un modelo a partir del cual poder calcular el valor de N para cualquier lugar se habrá hallado la transformación que vincule h con H.

2.5 Modelos Geoidales

Antes del año 1957 se suponía que el geoide coincidía sensiblemente con un elipsoide de revolución, lo que equivalía en términos dinámicos a suponer que la gravedad real coincidía con la normal. Poco tiempo después con el lanzamiento de los primeros satélites, se estableció un claro paralelismo entre las irregularidades de las trayectorias de los mismos y las de la gravedad, lo que indicaba un cierto aumento de la rigidez terrestre con relación al grado de plasticidad asociado a los modelos elipsoidales previstos.

La NASA propuso un modelo irregular para la Tierra llegando a calcular sus discrepancias con el esferoidal convencional. Aunque este primer geoide, fruto de la geodesia espacial, resultara demasiado simétrico y simplificado, es indudable que sirvió para

Autores: Jaime Betancur, Antonio Villaluenga

comprobar que el radio medio correspondiente al Polo Sur era unos 40 metros más corto que el homólogo del hemisferio Norte, una diferencia que permitió anunciar la forma periforme de la Tierra, la cual sería plenamente confirmada por los satélites posteriores.

Fig. 7: Primer modelo periforme calculado por la NASA.

La determinación rigurosa del geoide no es un problema de fácil solución, habida cuenta de los más de 1000 parámetros necesarios para describirlo detalladamente, aunque en términos globales su ondulación máxima con relación al elipsoide es del orden de unos 100 metros, a nivel local presenta numerosas elevaciones y depresiones con relación al mismo. La precisión alcanzada para las alturas del geoide varía entre algunos decímetros en los océanos y algunos metros sobre los continentes, por encima de los cuales no hay una técnica que permita hallar la ondulación con gran precisión.

Los modelos geopotenciales permiten calcular los valores de N que vinculan h con H, y tienen asociado un conjunto de constantes: de atracción gravimétrica terrestre (GM), semieje mayor y aplastamiento del elipsoide terrestre, velocidad de rotación de la tierra y los coeficientes del desarrollo armónico. Este cálculo se realiza con un programa general que lee los coeficientes y calcula los valores relacionados con el potencial, entre ellos N.

Para el desarrollo de un modelo geopotencial de alto grado se utiliza tres tipos de información:

- Obtenida a partir del estudio de las perturbaciones de órbitas de satélites.
- Gravimétricas terrestre y aérea.
- Altimétricas de satélites sobre los océanos.

Combinando estos tres tipos de soluciones se obtiene una mejor solución que utilizando una sola de ellas. Esta solución depende del tratamiento de las altimetrías de los satélites, la disponibilidad de datos en tierra firme y la resolución de buenas computadoras.

Tutor: Jorge Faure

Estudio y Refinamiento de Modelos Geoidales PROYECTO FINAL

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA DICIEMBRE 2009

El avance de la tecnología ha permitido desarrollar modelos geopotenciales cada vez más precisos:

2.5.1 - Modelos Geoidales en Uruguay

En 1993 Uruguay comenzó a usar en forma sistemática el GPS, como apoyo a su cartografía a escala 1/50000, con el objetivo de realizar un modelo geoidal local.

Se realizó en 1994 una primera determinación de un modelo adaptado al área del Uruguay, en cooperación con la Universidad de San Pablo, Brasil. El *modelo GeoidUru 1994*, estuvo basado en la separación espectral de la altura geoidal en dos componentes diferentes: una de mayor longitud de onda, obtenida a partir de un modelo geopotencial (GEMT-2, grado=36) y otra de menor longitud de onda, proporcionada por la integral de Stokes modificada, operando sobre 924 anomalías gravimétricas.

Se utilizó el modelo geopotencial *GEMT-2*, truncado al grado de 36 y 924 estaciones gravimétricas de la Red Gravimétrica Fundamental. La integral fue extendida hasta una distancia 3,6° del punto considerado, compatible con el modelo geopotencial utilizado. Este modelo utilizado presentó algunas diferencias, principalmente en la zona este del país, donde las diferencias con altitudes obtenidas por GPS sobre estaciones con altitud ortométrica conocida superó los 2m.

Luego en 1995 se ajustó la Red Gravimétrica Uruguaya (unas 2300 estaciones), en un trabajo conjunto con la Universidad de Hannover, Alemania, la cartografía de todo el país estaba disponible a escala 1/50000. Basándose en esto se determinó un modelo geoidal de precisión centimétrica situado entre las latitudes -30° a -35° y las longitudes 301.5° y 307°, dicho modelo se denominó *UruGeoide2000*.

2.5.2 - Modelos Geoidales Globales

2.5.2.1 Modelo EGM-96:

En la actualidad existen muchos modelos matemáticos geopotenciales, el más difundido sin lugar a dudas es el *EGM96*. Fue desarrollado en forma conjunta con la NASA y por la National Imagery and Mapping Agency (NIMA) de Estados Unidos de América, incluyendo relevamientos aero-gravimétricos sobre Groenlandia y partes del Ártico y la Antártida recolectados por el NRL (Laboratorio de Investigación Naval), y una colección de proyectos cooperativos, muchos de los cuales fueron acordados con la Universidad de Leeds. Su comportamiento en Sudamérica fue analizado por Blitzkow (1997), y los resultados fueron positivos.

Los procedimientos más modernos para calcular geoides detallados emplean técnicas basadas en las transformaciones rápidas de Fourier (FFT), este es el caso del modelo EGM96, que incluye más de millón y medio de medidas gravimétricas (marítimas y terrestres) además de las propias de la geodesia espacial.

Tutor: Jorge Faure

30' Mean Gravity Anomalies: EGM96 (Nmax=360)

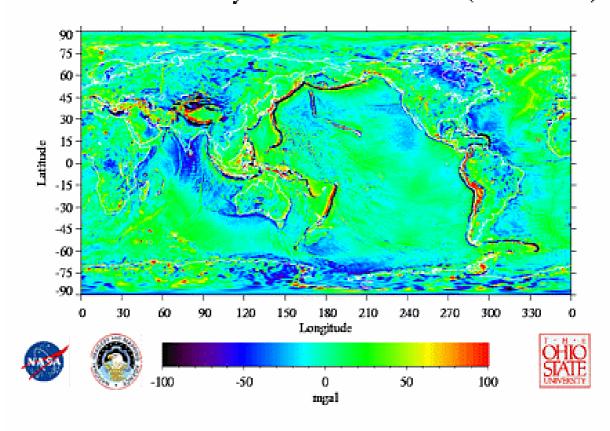


Fig. 8: Anomalías de la Gravedad para el modelo EGM96.

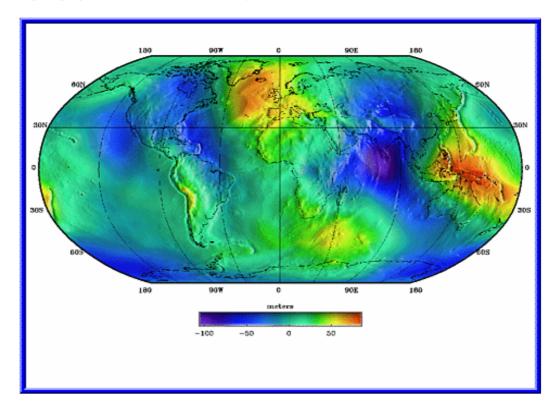


Fig. 9: Ondulación del Geoide EGM96 según la NASA.

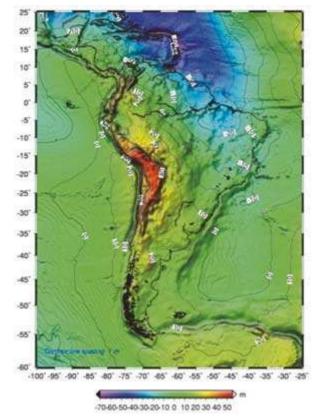


Fig. 10: Geoide calculado por la Universidad de Berlín, a través del EGM 96.

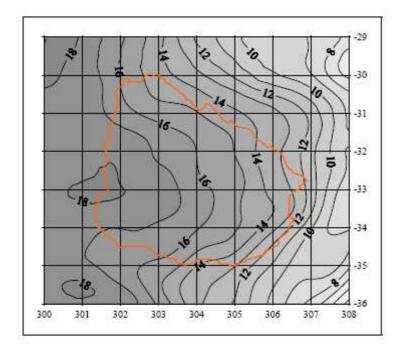


Fig. 11: Alturas geoidales generadas para el Modelo Geopotencial EGM 96(360).

2.5.2.2. Modelo EGM-2008:

El Modelo Gravitacional EGM2008 ha sido publicado por la Agencia Nacional de Inteligencia Geoespacial (NGA), EGM Equipo de Desarrollo. Los cálculos del geoide local se han basado tradicionalmente en la filosofía Helmert de condensación: la topografía se condensa en una capa delgada sobre el geoide, mientras que el efecto directo de la anomalía de la gravedad tiende hacia abajo del geoide. Numéricamente, esto se hace mediante la sustitución de la anomalía de la gravedad por la anomalía de Faye.

Este modelo ofrece una resolución y precisión sin precedentes, exponiendo hasta el más mínimo error de incompatibilidad. El logro de mejores resultados en los cálculos, utilizando el geoide EGM08, dependerá de la forma en que las reducciones topográfica y de gravedad se lleven a cabo. Como un ejemplo, cuando el EGM08 se utiliza como campo de referencia en Estados Unidos, la precisión del geoide (en comparación con el GPS / Nivelación de control) es de 9,1 cm. con la condensación de Helmert y de 7,28 cm. utilizando el análisis de baja continuación.

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA DICIEMBRE 2009

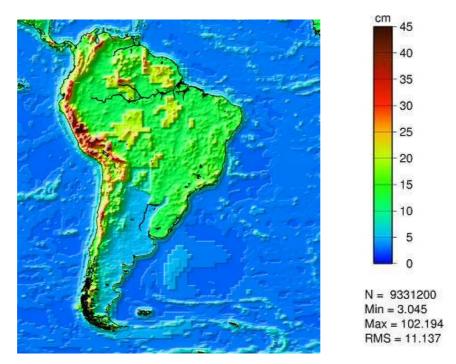


Fig. 12: Error de N para el modelo EGM2008 (5'×5').

Valores del Error Cuadrático Medio del Modelo EGM2008:

Región	RMS σ_N (cm)	RMS σ _ξ (arcsec)	RMS σ_{η} (arcsec)
φ < 66° y Océanos	5,8	0,38	0,39
CONUS	5,9	0,47	0,47
Continental	18,3	1,69	1,69
Océanos	6,1	0,42	0,42
Global	11,1	0,98	0,98

2.5.2.3. Modelo OSU-91A:

El Modelo Geopotencial OSU91A es un modelo global calculado por Richard H. Rapp y otros, en la Universidad Estatal de Ohio (Columbus). Este modelo es el resultado de una combinación de datos provenientes de diversas técnicas que incluyen la observación de perturbaciones orbitales de satélites artificiales, altimetría oceánica por radar y datos de gravedad terrestres y aéreos.

Para su cálculo se tuvieron en cuenta más de 45 valores de la anomalía de la gravedad, irregularmente repartidos, y los resultantes de interpolar sobre 259200 cuadrados de 0°,5 x 0°,5, siendo usado con frecuencia el sistema de posicionamiento GPS para calcular la altitud sobre el mismo. Esto significa que se pueden visualizar detalles del geoide en el entorno del medio grado (aproximadamente 55 km.), hecho que limita la exactitud de los modelos ya que solo pueden aportar gradientes del geoide muy suavizados.

Con esta resolución, se puede obtener una altura ortométrica con una precisión absoluta que puede variar según la zona de aplicación, entre \pm 1 m sobre los océanos y \pm 2 m sobre los continentes, y una precisión relativa en diferencias de nivel de \pm 28cm sobre los océanos y \pm 46 cm sobre los continentes.

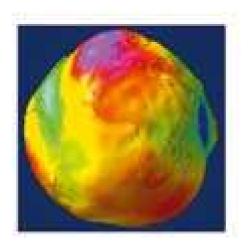


Fig. 13: Modelo Geopotencial OSU-91A.

2.5.2.4. Modelo DMA 10*10:

Este modelo geoidal fue calculado por la DMA (Defense Mapping Agency), actualmente NGA (Nacional Geospatial-Intelligence Agency). Dicha agencia se ha encargado de calcular otros modelos geoidales.

3) PROCEDIMIENTO:

3.1 Zona de estudio

La zona de estudio denominada Ciudad del Plata (antes llamada Rincón de la Bolsa), se encuentra al sureste del departamento de San José en la Republica Oriental del Uruguay.

18



Fig. 14: Croquis general de ubicación.

Dentro de Ciudad del Plata se encuentra los centros poblados de Villa Olímpica, Playa Pascual, Santa Mónica, Safici, Penino, Autodromo, San Fernando Chico, Parque Postel, San Fernando, Villa Rives, Delta del Tigre y Sofima.

Fig. 15: Vista aérea de la zona de estudio.

Fig. 16: Mapa de la zona.

Ciudad del Plata cuenta con aproximadamente 30.000 habitantes, varias fábricas funcionando, playas, comercios, escuelas, liceos. La ciudad se fue formando con el impulso que le fue dando la Ruta Nacional No. 1, y a partir del cruce del puesto de peajes se fueron formando los distintos barrios o villas.

Lo extenso de la zona le ha creado ciertas dificultades para su desarrollo, principalmente en lo que se refiere a prestación de servicios. De todas maneras OSE ha efectuado el nuevo tendido de la red de agua corriente, los servicios de UTE y ANTEL son aceptables salvo determinados casos. Las principales problemáticas tienen que ver con el vertedero municipal (por su ubicación en medio de dos barrios), el saneamiento y la erosión costera debido a la falta de canalización de aguas pluviales que arrastran tras de si cada vez que llueve, importantes cantidades de tierra y arenas.

Actualmente la zona no cuenta con obras importantes de saneamiento, existiendo sí un proyecto de OSE para la implementación de dichas obras como lo manifiesta el siguiente comunicado de la página web del organismo estatal:

"09/03/2007- REUNION DE DIRECTORIO CON VECINOS DE CIUDAD DEL PLATA Proyectos de Saneamiento

El Ministro de Vivienda, Ordenamiento Territorial y Medio Ambiente, Arq. Mariano Arana junto al Directorio de OSE, informaron en la tarde de hoy de los proyectos de saneamiento para **Ciudad del Plata (ex Rincón de la Bolsa)**.

En una primera etapa estos proyectos implicarán una inversión del orden de los **5 millones de dólares**.

Se estima que luego de realizado el Diseño Ejecutivo y los procesos licitatorios correspondientes, las obras comenzarán en el transcurso del año 2009."

3.2 Nivelación geométrica

Para el relevamiento altimétrico de puntos de la zona de estudio se llevó a cabo una nivelación geométrica, compuesta de circuitos cerrados, a lo largo de estos se materializaron puntos fijos que posteriormente fueron tomados con GPS.

Seguidamente se realizan algunas consideraciones a tener en cuenta antes de describir más en profundidad el procedimiento adoptado.

3.2.1 – Consideraciones:

1) El nivel medio del mar, usado como referencia para la definición de las alturas, que se utiliza actualmente no coincide con el geoide. El datum vertical uruguayo, definido en 1948, presenta diferencias con un datum vertical global (que oscilan entre +0,3m y +0,5m) debido a que se utilizaron registros del mareógrafo instalado en el Puerto de Montevideo.

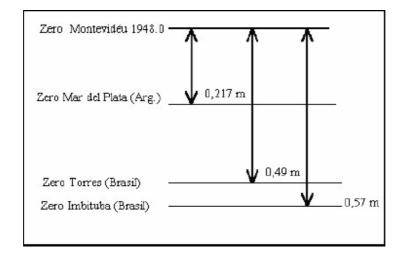


Fig. 17: Esquema de diferencias de datums altimétricos.

Estos registros se procesaron suponiendo aguas oceánicas, lo que constituye un error porque en régimen oceánico el nivel del mar varía con el flujo de las corrientes oceánicas, la presión atmosférica, la temperatura, la salinidad de las aguas, entre otros factores.

El nivel medio del mar se define como la media aritmética de alturas de marea registradas con un intervalo horario o menor a lo largo de 18,67 años, lo que permite cancelar todos los efectos variables de la mareas. Este intervalo de tiempo corresponde al período del movimiento de retrogradación de los nodos de la órbita lunar sobre la Eclíptica, respecto a las estrellas fijas. Los registros en este caso proporcionan un nivel medio que por no tener las aguas del Puerto de Montevideo un comportamiento de océano, en general, no coincide con el geoide, ni con ninguna otra superficie de nivel del campo gravitacional, dando lugar a un efecto que se denomina topografía de la superficie del mar (SSTop).

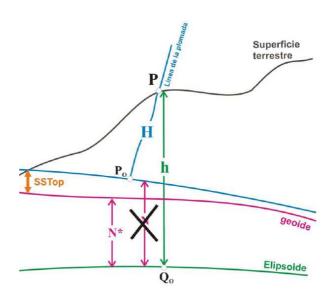


Fig. 18: Comportamiento del geoide respecto a la superficie de nivel.

2) Las cotas de los mojones del SGM no incluyen las reducciones por los efectos del campo de gravedad terrestre.

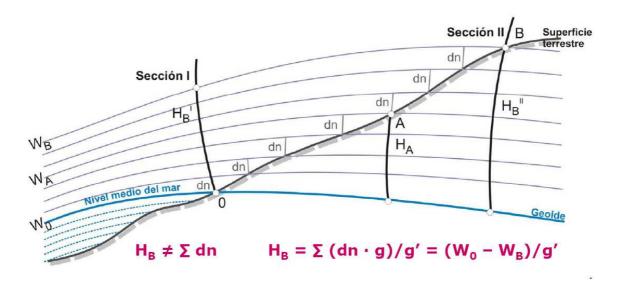


Fig. 19: Efecto de la gravedad sobre la altura ortométrica.

3) La diferencia de nivel calculada depende del posicionamiento del instrumento entre dos puntos del terreno.

Para la determinación de las alturas de la red de puntos, la metodología elegida fue la nivelación geométrica, lo que implica ubicar el telescopio del instrumento tangente a la

superficie equipotencial por el centro del mismo, de esta manera la vertical del lugar coincide con el eje principal del instrumento y en forma simultánea, el telescopio describe un plano horizontal.

La intersección de dicho plano con las miras, determina las lecturas que se realizan sobre las mismas. Este procedimiento determina diferencias de nivel geométrico, teniendo en cuenta las infinitas superficies equipotenciales de la gravedad, así como las diferentes posiciones que ocupa el instrumento a lo largo de una línea de nivelación, se deduce que la diferencia de nivel calculada por este método depende del caminamiento seguido.

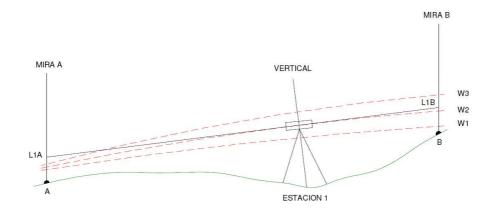


Fig. 20: Determinación del desnivel AB, desde Estación 1. (Faure, 2004)

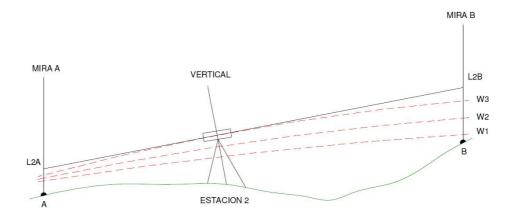


Fig. 21: Determinación del desnivel AB, desde Estación 2. (Faure, 2004)

$$\Delta H_1 = \text{L1A} - \text{L1B}$$

$$\Rightarrow \qquad \Delta H_1 \neq \Delta H_2$$

$$\Delta H_2 = \text{L2A-L2B}$$

A modo de ejemplo, en un caso se consideró la superficie equipotencial W2 y en la otra W3, pudiéndose deducir que ΔH_1 y ΔH_2 no tienen por que ser iguales.

3.2.2 – Pre-análisis:

Cada circuito de nivelación debe tener un error de cierre que no puede superar la tolerancia preestablecida. Para definir esta tolerancia se realiza un pre-análisis de los posibles errores a cometer en cada circuito de nivelación.

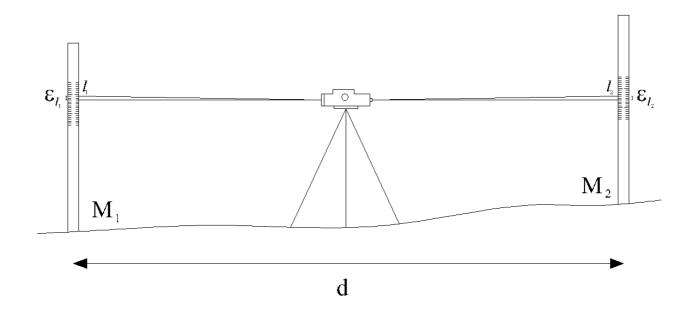


Fig. 22: Esquema de los errores cometidos en la lectura de las miras.

La distancia **d** corresponde a la distancia entre las miras, que para una nivelación geométrica debe ser menor a 100m. Aunque esta distancia en campo no superaba los 75m, se la considera igual a 100m, por lo que:

$$d = 100m$$

El desnivel entre los puntos M₁ y M₂ viene dado por la diferencias de lectura:

$$\Delta h = l_1 - l_2$$

Se considera que el error en la lectura de la mira, para una distancia menor a 50m, no deberá superar a 1mm:

$$\varepsilon_{l_1} = \varepsilon_{l_2} = \sigma_l = \pm 1mm$$

Por lo que:

$$\sigma_{\Delta h}^{2} = \left(\frac{\partial \Delta h}{\partial l_{1}}\right)^{2}.\sigma_{l}^{2} + \left(\frac{\partial \Delta h}{\partial l_{2}}\right)^{2}.\sigma_{l}^{2} = 2.\sigma_{l}^{2}$$

$$\sigma_{\Lambda h} = \sqrt{2.\sigma_I}$$

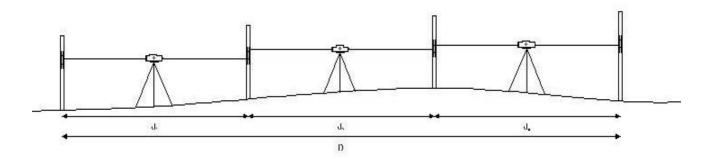


Fig. 23: Acumulación de errores a lo largo de un circuito.

La distancia D queda definida como:

$$D = d_1 + d_2 + ... + d_n$$

El desnivel ΔH entre dos puntos del terreno que se encuentran a una distancia mayor a d queda determinado por las suma de desniveles Δh :

$$\Delta H = \Delta h_1 + \Delta h_2 + ... + \Delta h_n$$

Por lo que:

$$\sigma_{\Delta H}^{2} = \left(\frac{\partial \Delta H}{\partial \Delta h_{1}}\right)^{2}.\sigma_{\Delta h}^{2} + \left(\frac{\partial \Delta H}{\partial \Delta h_{2}}\right)^{2}.\sigma_{\Delta h}^{2} + ... + \left(\frac{\partial \Delta H}{\partial \Delta h_{n}}\right)^{2}.\sigma_{\Delta h}^{2} = n.\sigma_{\Delta h}^{2}$$

$$\sigma_{\Delta H} = \sqrt{n.\sigma_{\Delta h}^2} = \sqrt{n}.\sqrt{2}.\sigma_l = \sqrt{\frac{D}{50}}.\sigma_l$$

La desviación para cada circuito de nivelación queda definida por la expresión anterior, donde D variará dependiendo de la longitud de cada circuito. Se tiene entonces una tolerancia T determinada para cada circuito, cuyo valor dependerá de la extensión de los mismos:

$$T = 3 \sigma_{\Lambda H}$$

3.2.3 – Procedimiento en campo:

Antes de salir al campo, con ayuda de un mapa de la zona se definió el trazado de los circuitos. Para ello se dividió la zona de estudio en 3 áreas menores, una zona situada al oeste (Playa Pascual), una zona Central y una situada al este (Delta del Tigre).

Para el estudio de la zona Central ya se contaba con datos de nivelación proporcionados por el Ing. Agrim. Jorge Faure por lo que no fue necesaria la tarea de realizar circuitos de nivelación. Para las dos zonas restantes, la metodología adoptada consistió en la realización de una red de nivelación en cada caso, donde se materializaron puntos fijos a una distancia promedio de 800 metros. En cada sitio donde se dejaron puntos se materializó además un punto auxiliar, para que, ante una eventual destrucción del punto principal, poder contar con otro de apoyo.

A la hora de vincular las redes, se tomaron como puntos fijos dos puntos del Servicio Geográfico Militar y un punto materializado de la red de nivelación de Ing. Faure.

3.2.3.1 - PLAYA PASCUAL

En esta zona, el punto de arranque y control adoptado fue el denominado 1.21.005 (o SGMM) del Servicio Geográfico Militar, situado frente al Km 32 de la ex-Ruta N°1 (actual "Ruta 1 Vieja"), y cuya monografía se muestra a continuación:

ID:	1.21.005			
		WGS 84	φ:34°44'13,952"S	λ:56°26' 36,912"W
		UTM	X: 550935,716	Y:6155957,91
COOR	DENADAS	ROU		
		PLANAS	X:441096,878	Y:6156602,372
		ROU GEOG.	φ:34°44'13,880"S	λ:56°26' 35,380"W
AL	TITUD	Nivel medio del mar		Z =13,71 mts
~	,	Ext. Tipo		
SEÑAI	LIZACIÓN	bulón	UBICACIÓN	KM 32 Ruta 1

Tabla 1: Datos de monografía del punto 1.21.005

Tutor: Jorge Faure

Fig. 24: Detalles de la monografía del punto 1.21.005 del SGM.

Observando la cartografía de Playa Pascual se definieron 5 circuitos, que se pueden observar en la siguiente imagen:

Fig. 25: Distribución de circuitos en Playa Pascual.

Para una mejor identificación de los puntos se les asignó una determinada nomenclatura, que se detalla a continuación, así como también características relacionadas con la materialización de los mismos.

Puntos fijos de la red de nivelación de Playa Pascual:

Punto	Cota sin ajustar	Descripción
AM	14,158	Mojón Antel – Ruta 1vieja – Avda. Calcagno
AM2	14,103	Mojón Antel – Ruta 1vieja – Avda. Calcagno
AL2	14,825	Alcantarilla - Avda. Calcagno – Fco. Espínola
AL	14,436	Cámara - Avda. Calcagno – Fco. Espínola
AK2	12,688	Mojón Hormigón - Fco. Espínola - San José
AK	13,178	Registro - Fco. Espínola - San José
AJ2	13,635	Entrada – Cno. Gaucho Negro - casi Espínola
AJ	13,458	Entrada – Cno. Gaucho Negro - casi Espínola
Al2	13,466	Alcantarilla – Cno. Gaucho Negro - R1 vieja
Al	14,846	Mojón Antel – Ruta 1vieja – Con. Gaucho Negro
AH2	15,349	Mojón UTE - Ruta1vieja – San Martín
AH	15,129	Mojón Antel - Ruta1vieja – San Martín
AG1	14,745	Muro - Ruta1 vieja - Calle A
AG2	13,995	Cámara - Ruta1 vieja - Calle A
AG	14,541	Protector ruta - R1 vieja – Calle A
S1	13,703	Registro UTE - Ruta1vieja - Avda. Río de la Plata
S2	14,346	Rotonda - Ruta1vieja - Avda Río de la Plata
AE	14,159	Cámara – Ruta 1- Avda. Río de la Plata
AE2	14,459	Antel – Ruta 1- Avda. Río de la Plata
AD2	13,573	Alcantarilla – Ruta 1- Calle A
AD	12,841	Cámara – Ruta 1 - Calle A
AC2	11,366	Antel – S. Garrido – Avda. Río de la Plata
AC	11,198	Muro – S. Garrido – Avda. Río de la Plata
AB	6,776	Varilla – Rambla - Avda. Río de la Plata
AB2	6,853	Cordón – Rambla - Avda. Río de la Plata
AA2	6,777	Alcantarilla - Herrera y Reissig - Alonso y Trelles
AA	6,705	Alcantarilla - Herrera y Reissig - Alonso y Trelles
Z2	6,974	Entrada – Herrera y Reissig - Calle H
Z	7,021	Entrada – Herrera y Reissig - Calle H
Y2	10,184	Alcantarilla – Los Plátanos - Calle H
Υ	10,470	Alcantarilla – Los Plátanos - Calle H
Χ	5,744	Alcantarilla – Rambla – J. De Viana
X2	5,523	Alcantarilla – Rambla – J. De Viana
W	7,803	Poste Hierro – P. Cea - Armando
W2	6,455	Alcantarilla – P. Cea – Armando
V	8,088	Cámara - Colo Colo – P. Cea
V2	7,865	Entrada - Colo Colo – P. Cea
U2	11,595	Mojón UTE – River Plate – P. Cea
U	11,370	Mojón UTE – River Plate – P. Cea
Т	13,597	Cámara - River Plate – Nazzasi
T2	13,739	Mojón Antel – River Plate - Nazzasi
S	14,404	Mojón Antel – P. Cea – Ruta 1
SA	13,731	Alcantarilla – P. Cea – Ruta 1
R	13,356	Alcantarilla – S. J. Garcia – Ruta 1
R2	13,710	Alcantarilla – S. J. Garcia – Ruta 1

Tabla 2: Cota y ubicación de los puntos fijos de Playa Pascual

Autores: Jaime Betancur, Antonio Villaluenga

Fig. 26: Procedimiento en campo para la determinación de desniveles.

3.2.3.2 – DELTA DEL TIGRE

Siguiendo el mismo procedimiento anterior, en esta zona se partió de un punto fijo de arranque y control, del Servicio Geográfico Militar, denominado 1.21.003 (o SGMP) y ubicado en la cabecera oeste del puente viejo sobre el río Santa Lucía, contando además con un punto de "llegada" materializado por OSE, identificado como K, que permitió vincular a este trabajo los datos del resto de la zona de estudio.

ID:	1.21.003			
		WGS 84	φ:34°46'52,910"S	λ:56°21' 18,860"W
		UTM	X: 558991,97	Y:6151012,91
COOF	RDENADAS	ROU		
		PLANAS	X:449214,870	Y:6117151.960
		ROU GEOG.	φ:34°44'52,840"S	λ:56°21' 17,340"W
A	LTITUD	Nivel medio del mar		z=7,81 mts
~	,	Ext. Tipo		
SENA	ALIZACIÓN	bulón	UBICACIÓN	Barra S. Lucia

Tabla 3: Datos de monografía del punto 1.21.003

Fig. 27: Detalles de la monografía del punto 1.21.003 del SGM.

Siguiendo el procedimiento adoptado para Playa Pascual, observando la cartografía de Delta del Tigre, se definieron los circuitos de la red de nivelación.

Fig. 28: Distribución de circuitos en Delta del Tigre.

Puntos fijos de la red de nivelación de Delta del Tigre:

Punto	Cota sin ajustar	Descripción
AN	3,708	Tornillo Leones - R1 vieja – Avda. Malecón
AN2	3,81	Mojón Hormigón - R1 vieja – Avda. Malecón
AO	2,032	Alcantarilla - Ceilán – Antillas
AO2	2,204	Poste - Ceilán – Antillas
AP	2,444	Cámara – Java – Antillas
AP2	2,645	Mojón Antel – Java – Antillas
AQ2	2,199	Entrada – Mandala – Hawai
AQ	2,141	Entrada solar 28 – Mandala – Hawai
AR	2,949	Alcantarilla – Samoa – Haití
AR2	3,02	Alcantarilla – Samoa – Haití
AS2	4,667	Poste – Mandalay – Esperanza
AS	5,439	Mojón Hormigón – Mandalay - Esperanza
AT	2,929	Mojón Antel – Java – Boreal
AT2	2,704	Alcantarilla – Java – Boreal
AU	4,238	Mojón UTE - Ruta 1 (peaje nuevo)
AU2	4,095	Mojón UTE - Ruta 1 (peaje nuevo)
AV	5,622	Km 24 - Ruta 1 (vieja) – Tabaré
AV2	4,716	Mojón Antel - Ruta 1 (vieja) – Tabaré
AW	3,814	Registro - Tabaré – Chaná
AW2	4,369	Entrada solar 572 - Tabaré – Chaná
AX	5,101	Registro - Zapicán – Bohanes
AX2	5,405	Contador - Zapicán – Bohanes
AY2	5,978	Mojón Antel - Ruta 1 (vieja) – Zapicán
AY	5,381	Base Columna - Ruta 1 (vieja) - Zapicán
AZ	6,671	Mojón Antel - Ruta 1 (vieja) - Cno. Bäo
AZ2	5,877	Base Columna - Ruta 1 (vieja) - Cno. Bäo
BG	4,652	Registro - Cno. Bäo – Colonia
BG2	4,663	Registro - Cno. Bäo – Colonia
L	5,437	Registro – Rivera
BI1	6,264	Registro – Rivera – Salto
BI2	5,769	Registro – Rivera – Salto
k1	4,582	Base Columna - Ruta 1 (vieja) - rotonda
k2	4,434	Base Columna - Ruta 1 (vieja) - rotonda

Tabla 4: Cota y ubicación de los puntos fijos de Delta del Tigre

3.3 - Ajuste de la red

Una vez definidos los puntos fijos se procedió a realizar el ajuste de la red. Para dicha tarea se utilizó el Método de Mínimos Cuadrados, realizándose además una verificación del mismo a través del programa Columbus.

Se ajustaron los Δh de ambas zonas por separado, vinculándolas a través de los puntos intermedios suministrados por OSE, los cuales ya estaban previamente ajustados mediante el mismo método.

3.3.1 - Playa Pascual

En forma previa al ajuste de los Δh se realizó la verificación de que los vectores de cierre, para cada circuito, cumplieran con la tolerancia preestablecida.

Circuito 1:

Observación	Tramo	Distancia	ΔН
I ₁	SGMM - AM	75	0,448
	AM - AL	608	0,276
I_3	AL - AK	983	-1,258
I_4	AK - AJ	485	0,28
l ₅	AJ - AI	712	1,388
l ₆	AI - AH	477	0,283
l ₇	AH - AG	635	-0,588
l ₈	AG - SGMM	330	-0,853
	Dist. Total =	4305	

Vector de cierre: $v_1 = -0.024$

$$n = 4305/100 = 43,05$$

$$\sigma_{\Delta H_1} = \sqrt{n}.\sqrt{2}.0,001 = 0,00928$$

$$T = 3 \sigma_{\Delta H_1} = 2,78 \text{ cm}$$

Circuito 2:

Observación	Tramo	Distancia	ΔΗ
I ₁	SGMM-AM	75	0,452
l ₉	AM-S1	280	-0,455
I ₁₀	S1-AE	405	0,456
I ₁₁	AE-AD	680	-1,318
l ₁₂	AD-AG	485	1,699
l ₈	AG-SGMM	335	-0,853
	Dist. Total =	2260	

$$v_2 = -0.019$$

$$n = 22,60$$

$$\sigma_{\Delta H} = 0,00661$$

$$T = 3 \sigma_{\Delta H} = 1,98 \text{ cm}$$

Estudio y Refinamiento de Modelos Geoidales PROYECTO FINAL

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA DICIEMBRE 2009

Circuito 3:

Observación	Tramo	Distancia	ΔΗ
I ₁₃	AE-AC	707	-2,96
I ₁₄	AC-AB	794	-4,422
I ₁₅	AB-AA	610	-0,074
I ₁₆	AA-Z	450	0,316
l ₁₇	Z-Y	1006	3,449
I ₁₈	Y-AD	634	2,344
I ₁₁	AD-AE	680	1,318
	Dist. Total =	4881	

$$v_3 = -0.029$$

$$n = 48,81$$

$$\sigma_{\Delta H} = 0.00988$$

$$T = 3 \sigma_{\Delta H} = 2,96 \text{ cm}$$

Circuito 4:

Observación	Tramo	Distancia	ΔН
I ₁₉	AB-X	459	-1,032
l ₂₀	X-W	457	2,059
l ₂₁	W-V	523	0,285
l ₂₂	V-U	633	3,282
l ₂₃	U-T	538	2,227
l ₂₄	T-AC	557	-2,382
I ₁₄	AC-AB	794	-4,422
	Dist. Total =	3961	

$$v_4 = 0.017$$

$$n = 39,61$$

$$\sigma_{\Delta H} = 0.01041$$

$$T = 3 \sigma_{\Delta H} = 2,67 \text{ cm}$$

Circuito 5:

Observación	Tramo	Distancia	ΔΗ
l ₂₄	AC-T	557	2,382
l ₂₃	T-AH	538	-2,227
l ₂₅	AH-S	927	3,034
l ₂₆	S-R	466	-1,048
l ₂₇	R-AE	484	0,816
I ₁₃	AE-AC	707	-2,96
	Dist. Total =	3679	

$$v_5 = -0.003$$

$$n = 36,79$$

$$\sigma_{\Delta H} = 0.01055$$

$$T = 3 \sigma_{\Delta H} = 2,57 \text{ cm}$$

Como es posible observar los vectores de cierre de los circuitos cumplieron con las tolerancias preestablecidas. Por lo que se procedió al ajuste de los datos obtenidos, aplicando para ello el Método de Mínimos Cuadrados, se obtuvieron así los resultados que se observan en la siguiente tabla:

- ΔH: Δh obtenidos de la nivelación

- v : residual correspondiente

 $-\Delta H_c$: Δh ajustados

 $-\sigma_{\Delta Hc}$: desviación estándar de los Δh ajustados

	ΔΗ	V	ΔH _c	$\sigma_{\scriptscriptstyle\! \Delta Hc}$
l ₁	0,448	0,001	0,449	0,003
l ₂	0,276	0,003	0,279	0,010
l ₃	-1,258	0,004	-1,254	0,013
l ₄	0,28	0,002	0,282	0,013
l ₅	1,388	0,003	1,391	0,012
I ₆	0,283	0,002	0,285	0,011
l ₇	-0,588	0,003	-0,585	0,006
l ₈	-0,853	0,006	-0,847	0,006
l ₉	-0,005	0,004	-0,001	0,007
I ₁₀	0,456	0,005	0,461	0,009
I ₁₁	-1,318	0,002	-1,316	0,009
I ₁₂	1,699	0,006	1,705	0,009
I ₁₃	-2,96	0,004	-2,956	0,012
I ₁₄	-4,422	0,002	-4,420	0,014
I ₁₅	-0,074	0,006	-0,068	0,015
I ₁₆	0,316	0,004	0,320	0,014
I ₁₇	3,449	0,009	3,458	0,012
I ₁₈	2,344	0,006	2,350	0,009
I ₁₉	-1,032	-0,003	-1,0352	0,015
l ₂₀	2,059	-0,003	2,056	0,015
l ₂₁	0,285	-0,004	0,281	0,015
l ₂₂	3,282	-0,004	3,278	0,014
l ₂₃	2,227	-0,002	2,2249	0,014
l ₂₄	-2,382	-0,002	-2,384	0,014
l ₂₅	3,034	-0,003	3,031	0,013
l ₂₆	-1,048	-0,001	-1,049	0,012
l ₂₇	0,816	-0,002	0,815	0,012

Tabla 5: Datos del ajuste de los desniveles en Playa Pascual

Teniendo los Δh ajustados se procedió a la corrección correspondiente de las cotas, obteniéndose los siguientes resultados:

Tutor: Jorge Faure

Puntos	Cotas corregidas	$\sigma_{\scriptscriptstyle Cotas}$	Puntos	Cotas corregidas	$\sigma_{\scriptscriptstyle Cotas}$
AM	14,159	0,003	AB	6,794	0,009
AL	14,438	0,009	AA	6,726	0,009
AK	13,184	0,011	Z	7,046	0,008
AJ	13,466	0,008	Υ	10,504	0,011
Al	14,857	0,010	Х	5,759	0,008
АН	15,143	0,008	W	7,814	0,008
AG	14,557	0,009	V	8,096	0,008
SGMM	13,710	0,006	U	11,373	0,009
S1	13,709	0,006	Т	13,598	0,008
AE	14,170	0,007	S	14,405	0,010
AD	12,854	0,008	R	13,355	0,008
AC	11,214	0,009			

Tabla 6: Cotas corregidas y sus respectivas desviaciones. (Playa Pascual)

3.3.2 – Delta Del Tigre

Siguiendo el procedimiento empleado anteriormente para la zona de Playa Pascual se realizó el ajuste de la red de Delta del Tigre:

Circuito 6

Observación	Tramo	Distancia	ΔΗ
l ₃	AO-AP	964	0,412
l ₈	AP-AT	775	0,472
l ₉	AT-AO	741	-0,88
	Dist. Total =	2480	

$$v_6 = -0.004$$

 $n = 24.80$

$$\sigma_{\!\Delta H}\!=0,\!007$$

$$T = 3 \sigma_{\Delta H} = 2,11 \text{ cm}$$

Circuito 7:

Observación	Tramo	Distancia	ΔΗ
l ₄	AP-AQ	1288	-0,303
l ₅	AQ-AR	730	0,808
l ₆	AR-AS	1021	2,491
l ₇	AS-AT	1050	-2,51
l ₈	AT-AP	775	-0,472
	Dist. Total =	4864	

$$v_7 = 0.014$$

 $n = 48.64$
 $\sigma_{\Delta H} = 0.0099$

$$T = 3 \, \sigma_{\Delta H} = 2,96 \, \text{cm}$$

Estudio y Refinamiento de **Modelos Geoidales** PROYECTO FINAL

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA **DICIEMBRE 2009**

Circuito 8:

Observación	Tramo	Distancia	ΔΗ
I ₁	SGM-AN	723	4,102
I ₁₀	AN-AU	702	-0,53
I ₁₁	AU-AV	349	-1,384
l ₂₀	AV-AY	554	0,229
I ₁₅	AY-AZ	871	-1,29
l ₂₁	AZ-k	770	2,099
	Dist. Total =	3969	

$$v_8 = 3,237 - 3,226 = 0,011$$

$$n = 39,69$$

$$\sigma_{\Delta H} = 0.0089$$

$$T = 3 \sigma_{\Delta H} = 2,67 \text{ cm}$$

Circuito 9:

Observación	Tramo	Distancia	ΔΗ	
l ₁₂	AV-AW	263	-1,808	
I ₁₃	AW-AX	424	1,287	
I ₁₄	AX-AY	481	0,280	
l ₂₀	AY-AV	554	0,229	
	Dist. Total =	1722		

$$v_9 = -0.012$$

 $n = 17.22$

$$n = 17,22$$

$$\sigma_{\Delta H} = 0.0059$$

 $T = 3 \ \sigma_{\Delta H} = 1.76 \ \text{cm}$

Circuito 10:

Observación	Tramo	Distancia	ΔΗ
l ₂₁	k-AZ	770	2,099
I ₁₆	AZ-BG	570	-2,019
l ₁₇	BG-L	381	0,783
	Dist. Total =	1721	

$$V_{10} = 0.866 - 0.863 = 0.003$$

$$n = 17,21$$

$$\sigma_{AH} = 0.0059$$

$$\sigma_{\Delta H} = 0,0059$$

 $T = 3 \ \sigma_{\Delta H} = 1,76 \ \text{cm}$

Circuito 11:

Observación	Tramo	Distancia	ΔΗ	
l ₂	AN-AO	638	-1,676	
l ₂₂	AO-AN	638	1,683	
	Dist. Total =	1276		

$$v_{11} = 0.007$$

$$n = 12,76$$

$$\sigma_{\Delta H} = 0.0051$$

$$T = 3 \sigma_{\Delta H} = 1,51 \text{ cm}$$

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA **DICIEMBRE 2009**

Al igual que en Playa Pascual los vectores de cierre cumplieron con las tolerancias preestablecidas. Por lo que se procedió al ajuste de los datos obtenidos:

	ΔΗ	V	ΔH_{c}	$\sigma_{\scriptscriptstyle{\Delta Hc}}$
I ₁	-4,102	-0,002	-4,104	0,005
	-1,676	-0,004	-1,680	0,006
I_3	0,412	-0,003	0,410	0,008
I_4	-0,303	-0,004	-0,307	0,009
I ₅	0,808	-0,002	0,806	0,010
I ₆	2,49	-0,003	2,487	0,009
l ₇	-2,51	-0,003	-2,513	0,007
l ₈	-0,472	-0,000	-0,472	
l ₉	-0,88	-0,002	-0,882	
I ₁₀	0,53	-0,002	0,528	0,006
I ₁₁	1,384	-0,001	1,383	0,006
I ₁₂	-1,808	0,002	-1,806	0,006
I ₁₃	1,287	0,003	1,290	0,006
I ₁₄	0,28	0,003	0,283	0,006
I ₁₅	1,29	-0,002	1,288	0,004
I ₁₆	-2,019	0,000	-2,019	0,003
I ₁₇	0,783	0,000	0,783	
l ₂₀	0,229	0,005	0,234	0,004
l ₂₁	-2,099	0,002	-2,097	0,004
l ₂₂	1,683	-0,004	1,680	0,004

Tabla 7: Datos del ajuste de los desniveles en Delta del Tigre

Por lo tanto, las cotas corregidas son las siguientes:

Puntos	Cotas corregidas	$\sigma_{\scriptscriptstyle Cotas}$	Puntos	Cotas corregidas	$\sigma_{\scriptscriptstyle Cotas}$
AN	3,706	0,005	AU	4,235	0,005
AO	2,027	0,004	AV	5,618	0,004
AP	2,436	0,005	AW	3,812	0,003
AQ	2,129	0,006	AX	5,101	0,004
AR	2,935	0,005	AY	5,384	0,004
AS	5,422	0,006	AZ	6,672	0,005
AT	2,909	0,006	BA	4,654	0,004

Tabla 8: Cotas ajustadas y respectiva desviación. (Delta del Tigre)

Autores: Jaime Betancur, Antonio Villaluenga

3.4 - Verificación del ajuste con el programa Columbus

Realizado el ajuste de la red por mínimos cuadrados, se realizó un chequeo con el programa científico Columbus.

Columbus es un software de ajuste de redes geodésicas, que por medio del análisis de mínimos cuadrados, resuelve redes de cualquier tamaño. Con este programa se puede diseñar redes geodésicas 1D vertical y 2D/3D y predecir su calidad antes de su utilización.

Para realizar una simulación de diseño de red, se necesita un conjunto de datos obligatorios. Este conjunto de datos incluye una estimación de las posiciones de cada lugar y los tipos de observación que se van a medir, junto con sus errores esperados, expresados en desviaciones estándar.

Al mismo tiempo se puede analizar estos datos y saber si la red estadísticamente satisface las precisiones. Si no, el software permite fácilmente modificar el modelo, añadiendo o suprimiendo estaciones u observaciones, o cambiando el error esperado para cada observación.

Para el presente estudio se realizó un análisis de la red, considerando que sería el caso de una red en 1D, para lo cual el programa permite ciertos procesos y opciones:

- Construcción de la red utilizando observaciones de nivelación geométrica tradicional.
- Ponderación a través de la desviación estándar de cada observación, por la distancia entre las estaciones o por el número de configuraciones entre las estaciones.
- Las observaciones a ajustar pueden ser por altura (elevación), o por las diferencias entre Δh .

Luego de utilizado el programa se determinó que para la red de nivelación los resultados son satisfactorios, por lo que se puede suponer que la red está correctamente ajustada.

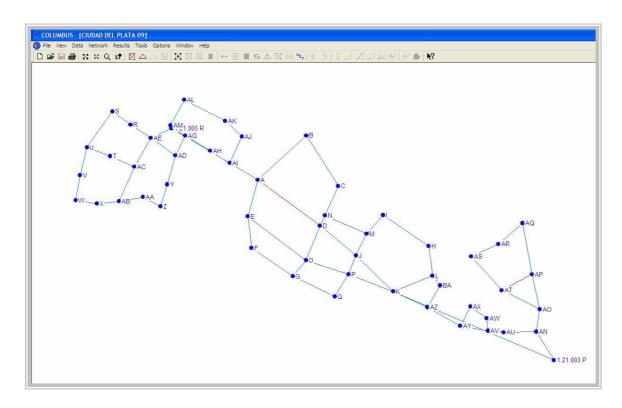


Fig. 29: Captura de pantalla del programa Columbus.

3.5 - Relevamiento con GPS

En esta etapa del trabajo se tomaron con un receptor GPS (Leica GPS 1230) todos los puntos que se habían dejado uniformemente distribuidos, de los cuales se cuenta con la cota oficial. De esta forma, producto de las observaciones levantadas con GPS, se tendrá de cada punto la altura elipsoidal.

A continuación se muestra la tabla con los puntos relevados y sus respectivas latitud, longitud y altura elipsoidal, así como la altura oficial obtenida de la nivelación:

Punto	Latitud	Longitud	Altura	Cota
		_	elipsoidal	oficial
SGMP	34 46 52.708254 S	56 21 18.855784 W	22,900	7,810
AN	34 46 33.198034 S	56 21 33.619891 W	18,800	3,706
AO	34 46 17.810467 S	56 21 30.723035 W	17,110	2,027
AP	34 45 53.821492 S	56 21 37.227073 W	17,540	2,436
AQ	34 45 18.776499 S	56 21 45.042496 W	17,220	2,129
AR	34 45 33.069314 S	56 22 5.139952 W	18,030	2,935
AS	34 45 41.612768 S	56 22 27.749672 W	20,530	5,422
AT	34 46 4.831717 S	56 22 2.352128 W	18,000	2,909
AU	34 46 33.604612 S	56 22 0.677496 W	19,340	4,235
AV	34 46 32.609446 S	56 22 13.964554 W	20,720	5,618
AW	34 46 23.975133 S	56 22 14.927329 W	18,990	3,812
AX	34 46 15.972736 S	56 22 28.374552 W	20,280	5,101
AY	34 46 29.260036 S	56 22 36.905393 W	20,530	5,384
AZ	34 46 16.432438 S	56 23 4.311135 W	21,810	6,672
A	34 44 49.132300 S	56 25 25.2592 W	27,690	12,509
В	34 44 18.6554 S	-56 24 44.91 W	29,990	14,797
С	34 44 53.2867 S	56 24 18.3979 W	28,217	13,045
D	34 45 20.5544 S	56 24 33.7087 W	26,912	11,744
E	34 45 14.168 S	56 25 33.6022 W	25,350	10,180
F	34 45 35.8739 S	56 25 30.4148 W	18,266	3,083
G	34 45 55.202 S	56 24 56.1464 W	17,779	2,605
Н	34 45 34.516 S	56 23 03.1897 W	28,344	13,217
l	34 45 13.3128 S	56 23 41.0465 W	28,357	13,170
J	34 45 40.9257 S	56 24 03.5807 W	23,311	8,138
K	34 46 05.5994 S	56 23 32.7149 W	19,714	4,571
L	34 45 54.8736 S	56 22 59.9879 W	20,550	5,437
M	34 45 26.0371 S	56 23 54.7259 W	26,296	11,148
0	34 45 44.2841 S	56 24 45.2379 W	20,888	5,717
P	34 45 53.8992 S	56 24 09.8639 W	19,069	3,900
Q	34 46 09.0843 S	56 24 21.2744 W	17,844	2,681
AE	34 44 20.330673 S	56 26 54.178463 W	29,410	14,170
AD	34 44 32.472419 S	56 26 33.826934 W	28,080	12,854
AG	34 44 18.752742 S	56 26 25.535055 W	29,760	14,559
AM	34 44 11.794740 S	56 26 37.886112 W	29,400	14,159
AL	34 43 54.258652 S	56 26 26.294396 W	29,690	14,438
AK	34 44 8.718122 S	56 25 52.406780 W	28,400	13,184
AJ	34 44 19.415746 S	56 25 38.494756 W	28,650	13,466
Al	34 44 37.629267 S	56 25 48.673059 W	30,050	14,857
AH	34 44 29.232052 S	56 26 4.797669 W	30,330	15,143
AC	34 44 40.165126 S	56 27 7.916863 W	26,480	11,214
AB	34 45 3.767470 S	56 27 20.676078 W	22,040	6,794
AA	34 45 0.879402 S	56 27 0.723054 W	21,980	6,726
Z	34 45 7.301849 S	56 26 46.194570 W	22,270	7,046
Y	34 44 52.254508 S	56 26 40.548357 W	25,730	10,504
R	34 44 11.222636 S	56 27 11.020851 W	28,610	13,355
S	34 44 2.149722 S	56 27 26.145769 W	29,670	14,405
U	34 44 26.952478 S	56 27 46.808295 W	26,650	11,373
V	34 44 45.928302 S	56 27 53.094845 W	23,370	8,096
W	34 45 3.045269 S	56 27 56.784466 W	23,080	7,814
X	34 45 5.426177 S	56 27 38.952995 W	21,020	5,759
Т	34 44 32.836855 S	56 27 27.924697 W	28,850	13,598

Tabla 9: Coordenadas geodésicas y cotas oficiales

Autores: Jaime Betancur, Antonio Villaluenga Tutor: Jorge Faure

40

Fig. 30: Relevamiento con GPS-Leica 1230.

4) Procesamiento de datos y cálculo de modelos

Como se vio en el marco teórico se sabe que la altura obtenida a partir de un modelo global más la ondulación del mismo, resulta en la altura elipsoidal, es decir:

$$H_{WGS84} = H_{M.GLOBAL} + N_{M.GLOBAL}$$

De la ecuación se cuenta con los datos de H_{WGS84} y $N_{M.GLOBAL}$, con la cual se calcula $H_{M.GLOBAL}$.

Si se considera que en la zona de estudio, las superficies equipotenciales de la gravedad tienen un no paralelismo despreciable, y que el origen de las alturas (cuya problemática ya se mencionó anteriormente), coincide con el geoide, entonces se puede aproximar las alturas del SGM con alturas ortométricas.

$$H_{WGS84} = H_{SGM} + N_{SGM}$$

Los datos con que se cuenta son H_{WGS84} y H_{SGM} con lo cual se calcula N_{SGM} . Si se igualan las dos ecuaciones anteriormente descriptas, se obtiene:

$$H_{M,GLOBAL} + N_{M,GLOBAL} + H_{SGM} + N_{SGM}$$

$$H_{SGM=}$$
 $H_{M.GLOBAL} + (N_{M.GLOBAL} - N_{SGM})$

$H_{SGM} = H_{M,GLOBAL} + \Delta N$

Se conoce el valor de ΔN puntualmente en cada punto de control, es un valor acotado y producto de las simplificaciones realizadas. Con ellos se realiza un modelo matemático, generando una función con la cual se podrá estimar el valor para todos los puntos de la zona en estudio.

A partir de la altura ortométrica referida a los modelos globales, se obtiene la altura de un punto en cota oficial.

Los puntos elegidos para obtener los ΔN están homogéneamente distribuidos de tal forma que permite modelar dicha diferencia de acuerdo a Vergos G.S. y M.G. Sideris.

Se plantean dos funciones paramétricas. La primera de ellas se basa en 4 parámetros $(b_o, b_1, b_2 \text{ y } b_3)$, y la segunda basada en 5 $(b_o, b_1, b_2, b_3 \text{ y } b_4)$, a continuación se las desarrolla para un punto i:

a)
$$\Delta N_i = b_3 + b_0 * \cos(\varphi_i) * \cos(\lambda_i) + b_1 * \cos(\varphi_i) * \sin(\lambda_i) + b_2 * \sin(\varphi_i) + v_i$$

b)
$$\Delta N_i = b_4 + b_0 * \cos(\varphi_i) * \cos(\lambda_i) + b_1 * \cos(\varphi_i) * \sin(\lambda_i) + b_2 * \sin(\varphi_i) + b_3 * \sin^2(\varphi_i) v_i$$

Lo que implica hallar los parámetros que minimicen los residuos (v_i)

En la ecuación de 4 parámetros si se considera n puntos, se generarán n ecuaciones, por lo que queda establecido un sistema de ecuaciones lineales de 4 incógnitas. En el caso de ser n > 4, el sistema se transforma en sobredeterminado, y su solución se halla aplicando mínimos cuadrados.

$$\Delta N_{1} = b_{3} + b_{0} * \cos(\varphi_{1}) * \cos(\lambda_{1}) + b_{1} * \cos(\varphi_{1}) * sen(\lambda_{1}) + b_{2} * sen(\varphi_{1})$$

$$\Delta N_{2} = b_{3} + b_{0} * \cos(\varphi_{2}) * \cos(\lambda_{2}) + b_{1} * \cos(\varphi_{2}) * sen(\lambda_{2}) + b_{2} * sen(\varphi_{2})$$

$$\downarrow$$

$$\Delta N_{i} = b_{3} + b_{0} * \cos(\varphi_{i}) * \cos(\lambda_{i}) + b_{1} * \cos(\varphi_{i}) * sen(\lambda_{i}) + b_{2} * sen(\varphi_{i})$$

$$\downarrow$$

$$\Delta N_{n} = b_{3} + b_{0} * \cos(\varphi_{n}) * \cos(\lambda_{n}) + b_{1} * \cos(\varphi_{n}) * sen(\lambda_{n}) + b_{2} * sen(\varphi_{n})$$

Estudio y Refinamiento de Modelos Geoidales PROYECTO FINAL

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA DICIEMBRE 2009

Análogamente se obtiene la segunda expresión:

$$\begin{bmatrix} \Delta N_1 \\ \Delta N_2 \\ \downarrow \\ \Delta N_i \\ \downarrow \\ \Delta N_n \end{bmatrix} = \begin{bmatrix} 1 & \cos(\varphi_1) \times \cos(\lambda_1) & \cos(\varphi_1) \times sen(\lambda_1) & sen(\varphi_1) & sen^2(\varphi_1) \\ 1 & \cos(\varphi_2) \times \cos(\lambda_2) & \cos(\varphi_2) \times sen(\lambda_2) & sen(\varphi_2) & sen^2(\varphi_2) \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & \cos(\varphi_i) \times \cos(\lambda_i) & \cos(\varphi_i) \times sen(\lambda_i) & sen(\varphi_i) & sen^2(\varphi_i) \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & \cos(\varphi_n) \times \cos(\lambda_n) & \cos(\varphi_n) \times sen(\lambda_n) & sen(\varphi_n) & sen^2(\varphi_n) \end{bmatrix} \times \begin{bmatrix} b_4 \\ b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} \Rightarrow A * X = b$$

Obtenidos los parámetros, permite, a partir, de las coordenadas geodésicas de un punto, obtener el valor de ΔN , con lo que aplicando la ecuación antes mencionada:

$H_{SGM} = H_{M,GLOBAL} + \Delta N$

Se obtiene la altura oficial para cualquier punto.

4.1- <u>EGM-96</u>

El análisis del comportamiento de N del modelo global EGM 96 en la zona, permite observar que su valor aumenta de este a oeste.

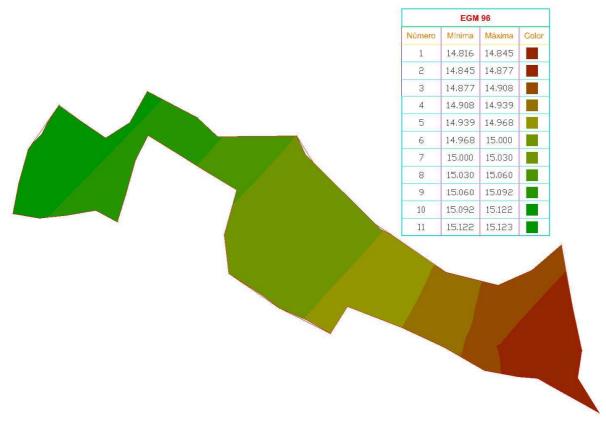


Fig. 31: Comportamiento de N del modelo EGM 96 en la zona.

4.1.1 Diferencias entre cotas oficiales y cotas obtenidas a partir del EGM-96

Se aplicó el modelo EGM 96 a las alturas elipsoidales, obteniendo una altura ortométrica que se compara con las cotas oficiales:

Nombre	Ondulación EGM96	Alturas Ort. EGM96	Cotas Oficiales	Diferencia EGM96-Oficial
SGMP	14,816	8,084	7,810	-0,274
AN	14,836	3,964	3,706	-0,258
AO	14,844	2,266	2,027	-0,239
AP	14,862	2,678	2,436	-0,242
AQ	14,887	2,333	2,129	-0,204
AR	14,890	3,140	2,935	-0,205
AS	14,897	5,633	5,422	-0,211
AT	14,869	3,131	2,909	-0,222
AU	14,851	4,489	4,235	-0,254
AV	14,858	5,862	5,618	-0,244
AW	14,864	4,126	3,812	-0,314

AX	14,876	5,404	5,101	-0,303
AY	14,895	5,635	5,384	-0,251
AZ	14,917	6,893	6,672	-0,221
AE	15,098	14,312	14,170	-0,142
A	15,034	12,656	12,509	-0,147
В	15,030	14,960	14,797	-0,162
С	14,996	13,221	13,045	-0,176
D	14,989	11,923	11,744	-0,180
E	15,024	10,326	10,180	-0,146
F	15,010	3,256	3,083	-0,174
G	14,981	2,798	2,605	-0,193
Н	14,932	13,412	13,217	-0,195
	14,965	13,392	13,170	-0,223
J	14,961	8,350	8,138	-0,213
K	14,929	4,785	4,571	-0,214
L	14,918	5,632	5,437	-0,196
М	14,965	11,331	11,148	-0,184
0	14,981	5,907	5,717	-0,190
Р	14,957	4,112	3,900	-0,213
Q	14,954	2,890	2,681	-0,209
AD	15,082	12,998	12,854	-0,144
AG	15,086	14,675	14,559	-0,116
AM	15,095	14,305	14,159	-0,146
AL	15,099	14,591	14,438	-0,153
AK	15,075	13,325	13,184	-0,141
AJ	15,063	13,587	13,466	-0,121
Al	15,058	14,993	14,857	-0,136
AH	15,070	15,260	15,143	-0,117
AC	15,094	11,386	11,214	-0,172
AB	15,087	6,953	6,794	-0,159
AA	15,079	6,901	6,726	-0,175
Z	15,069	7,201	7,046	-0,155
Υ	15,074	10,656	10,504	-0,152
R	15,111	13,499	13,355	-0,144
S	15,123	14,547	14,405	-0,142
U	15,119	11,531	11,373	-0,158
V	15,111	8,259	8,096	-0,163
W	15,104	7,976	7,814	-0,162
Х	15,094	5,926	5,759	-0,167
Т	15,107	13,743	13,598	-0,145
				•

Tabla 10: Aplicación del modelo EGM-96 y diferencia con cotas oficiales

Las diferencias obtenidas con respecto a las cotas oficiales, varían desde 11 cm. hasta 31 cm., concentrándose las mayores diferencias en la zona de Delta del Tigre.

Se realiza una superficie, por medio del software Civil de Autodesk, en la cual la z es la diferencia mencionada anteriormente y las coordenadas planimétricas son obtenidas aplicando la proyección UTM-Zona 21.

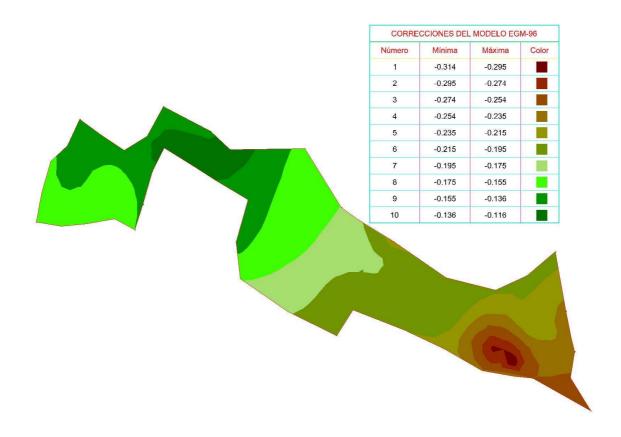


Fig. 32: Superficie comparativa entre el modelo EGM96 y la cota oficial

Se eligieron 3 puntos de control, de tal manera que de cada zona ajustada se contara con un punto, para testear así la superficie realizada, dando buenos resultados para las diferencias entre las cotas obtenidas del EGM-96 y las de la nivelación como así lo demuestra la siguiente tabla:

Punto	Nivel	C sup.	EGM96	EGM96 - C sup.	Diferencias
SGMM	13,710	-0,144	13,846	13,702	-0,008
N	12,022	-0,178	12,193	12,015	-0,007
BA	4,654	-0,221	4,890	4,669	0,015

Tabla 11: Testeo de la superficie teórica formada por las correcciones

Utilizando otro software topográfico (Topocal), se realizaron las curvas de nivel, donde cada curva indica la diferencia entre la cota oficial y la cota obtenida a partir de un modelo global.

Esta es una posible metodología de obtener la cota oficial, pero resulta poco práctica cuando se necesita procesar una gran cantidad de puntos.

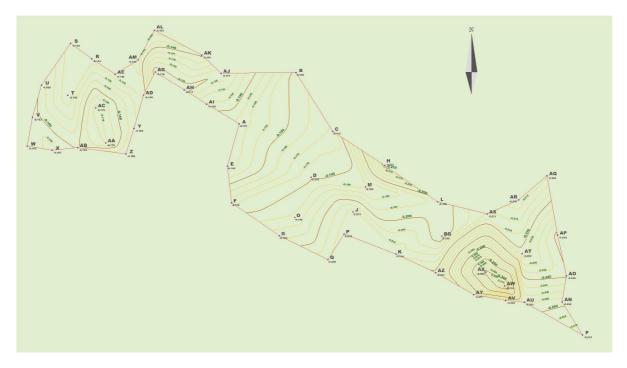


Fig. 33: Curvas de nivel de las diferencias ente las cotas obtenidas con EGM-96 y las oficiales

En el anexo del presente trabajo se pueden encontrar las curvas graficadas en un mayor tamaño para una mejor visualización. Se testeó dichas curvas en los puntos testigos y los resultados fueron similares a los obtenidos con la superficie:

Punto	Nivel	C curv.	EGM96	EGM96- C curv.	Diferencias
SGMM	13,710	-0,145	13,846	13,701	0,009
N	12,022	-0,176	12,193	12,017	0,005
BA	4,654	-0,220	4,890	4,670	-0,016

Tabla 12: Testeo de las curvas formadas por las correcciones del EGM-96

4.1.2 Refinamiento del Modelo EGM-96

Se aplicó al modelo EGM-96 las funciones de 4 y 5 parámetros definidas anteriormente. Se denominó ME96-4P al modelo obtenido a través de la función de 4 parámetros y ME96-5P al obtenido de la de 5 parámetros, calculándose los ΔN para la obtención de una nueva cota ortométrica, con la que se calculó la diferencia con las cotas oficiales y su respectiva desviación.

La expresión para el ΔN del modelo ME96-4P es la siguiente:

$$\Delta N_{i(ME96-4P)} = b_3 + b_0 \times \cos(\varphi_i) \times \cos(\lambda_i) + b_1 \times \cos(\varphi_i) \times sen(\lambda_i) + b_2 \times sen(\varphi_i) + v_i$$

Estudio y Refinamiento de Modelos Geoidales PROYECTO FINAL

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA DICIEMBRE 2009

Siendo: $b_3 = 31364,382812500$

 $b_0 = -68975,839843750$ $b_1 = 47281,1572265625$ $b_2 = 39222,7563476562$

Mientras que para el modelo ME96-5P:

 $\Delta N_{i(ME96-5P)} = b_4 + b_0 \times \cos(\varphi_i) \times \cos(\lambda_i) + b_1 \times \cos(\varphi_i) \times sen(\lambda_i) + b_2 \times sen(\varphi_i) + b_3 \times sen^2(\varphi_i) + v_i$

Siendo: $b_4 = -92860,976562500$

 $b_0 = 21270,163085937$ $b_1 = 32074,931640625$ $b_2 = 188300,687500000$ $b_3 = -141868,015625000$

Punto	EGM96	∆N96-4P	ME96-4P	DIF	$\sigma_{_4}$	∆N96-5P	ME96-5P	DIF	$\sigma_{\scriptscriptstyle 5}$
SGMP	8,084	-0,287	7,797	-0,013	0,009	-0,299	7,785	-0,025	0,012
AN	3,964	-0,268	3,696	-0,010	0,007	-0,274	3,690	-0,016	0,007
AO	2,266	-0,259	2,008	-0,019	0,007	-0,262	2,006	-0,021	0,007
AP	2,678	-0,241	2,437	0,001	0,006	-0,237	2,441	0,005	0,009
AQ	2,333	-0,217	2,116	-0,013	0,008	-0,211	2,122	-0,007	0,012
AR	3,140	-0,219	2,921	-0,014	0,006	-0,215	2,925	-0,010	0,009
AS	5,633	-0,218	5,415	-0,007	0,004	-0,217	5,417	-0,005	0,006
AT	3,131	-0,240	2,891	-0,018	0,005	-0,241	2,890	-0,019	0,006
AU	4,489	-0,260	4,229	-0,006	0,006	-0,268	4,221	-0,014	0,007
AV	5,862	-0,256	5,606	-0,012	0,005	-0,265	5,597	-0,021	0,007
AW	4,126	-0,249	3,876	0,064	0,005	-0,256	3,870	0,058	0,006
AX	5,404	-0,240	5,163	0,062	0,004	-0,245	5,158	0,057	0,004
AY	5,635	-0,247	5,388	0,004	0,005	-0,256	5,379	-0,005	0,007
AZ	6,893	-0,232	6,661	-0,011	0,005	-0,239	6,654	-0,018	0,006
AE	14,312	-0,142	14,170	0,000	0,004	-0,148	14,164	-0,006	0,005
Α	12,656	-0,159	12,498	-0,011	0,004	-0,161	12,495	-0,014	0,005
В	14,960	-0,147	14,813	0,016	0,007	-0,154	14,806	0,009	0,007
С	13,221	-0,168	13,053	0,008	0,005	-0,170	13,051	0,006	0,006
D	11,923	-0,181	11,742	-0,002	0,005	-0,183	11,741	-0,003	0,005
Е	10,326	-0,172	10,154	-0,026	0,005	-0,174	10,153	-0,027	0,005
F	3,256	-0,185	3,071	-0,011	0,006	-0,188	3,068	-0,014	0,006
G	2,798	-0,200	2,599	-0,006	0,006	-0,205	2,593	-0,012	0,007
Н	13,412	-0,205	13,207	-0,010	0,004	-0,205	13,208	-0,010	0,006
1	13,392	-0,185	13,207	0,038	0,005	-0,185	13,207	0,038	0,006
J	8,350	-0,198	8,153	0,015	0,005	-0,200	8,150	0,013	0,005
K	4,785	-0,219	4,566	-0,005	0,005	-0,224	4,560	-0,011	0,005
L	5,632	-0,219	5,413	-0,023	0,004	-0,221	5,411	-0,025	0,004
M	11,331	-0,190	11,141	-0,006	0,005	-0,191	11,140	-0,007	0,005
0	5,907	-0,178	5,729	0,012	0,005	-0,179	5,728	0,011	0,005
Р	4,112	-0,205	3,908	0,008	0,005	-0,209	3,903	0,004	0,006
Q	2,890	-0,213	2,677	-0,004	0,006	-0,221	2,669	-0,012	0,008
AD	12,998	-0,148	12,850	-0,004	0,004	-0,152	12,847	-0,007	0,004
AG	14,675	-0,141	14,534	-0,025	0,004	-0,148	14,527	-0,032	0,005

Autores: Jaime Betancur, Antonio Villaluenga

AM	14,305	-0,138	14,167	0,008	0,005	-0,145	14,159	0,000	0,006
AL	14,591	-0,130	14,461	0,023	0,006	-0,142	14,448	0,010	0,010
AK	13,325	-0,137	13,188	0,004	0,006	-0,146	13,179	-0,005	0,008
AJ	13,587	-0,140	13,445	-0,021	0,005	-0,150	13,438	-0,028	0,006
Al	14,993	-0,151	14,841	-0,016	0,004	-0,155	14,837	-0,020	0,004
AH	15,260	-0,146	15,114	-0,029	0,004	-0,151	15,109	-0,034	0,005
AC	11,386	-0,153	11,234	0,020	0,004	-0,154	11,232	0,018	0,005
AB	6,953	-0,166	6,787	-0,007	0,006	-0,165	6,788	-0,006	0,007
AA	6,901	-0,163	6,738	0,012	0,005	-0,167	6,737	0,011	0,006
Ζ	7,201	-0,167	7,035	-0,011	0,005	-0,167	7,034	-0,012	0,006
Υ	10,656	-0,158	10,498	-0,006	0,004	-0,160	10,496	-0,008	0,005
R	13,499	-0,138	13,361	0,006	0,005	-0,145	13,354	-0,001	0,006
S	14,547	-0,135	14,412	0,007	0,007	-0,144	14,404	-0,001	0,008
U	11,531	-0,148	11,383	0,010	0,006	-0,150	11,381	0,008	0,007
V	8,259	-0,159	8,100	0,004	0,007	-0,158	8,101	0,005	0,008
W	7,976	-0,168	7,808	-0,006	0,007	-0,166	7,810	-0,004	0,009
Χ	5,926	-0,168	5,758	-0,001	0,007	-0,167	5,759	0,000	0,008
Т	13,743	-0,150	13,593	-0,005	0,005	-0,152	13,591	-0,007	0,007

Tabla 13: Refinamiento del modelo EGM-96.

De la tabla 13, se calculó el promedio general (PROM.), promedio en valor absoluto (PROM.(V.A)), la máxima diferencia (MAX.) y la mínima diferencia (MIN.):

4	PROM.	-0,001
PA	PROM (V.A.)	0,013
PARAM.	MAX.	0,064
1.	MIN.	0,000

ر ت	PROM	-0,004
PA	PROM (V.A.)	0,014
PARAM	MAX.	0,058
-	MIN.	0,000

Tabla 14: Estadística de los modelos creados a partir del EGM-96

4.1.3 Testeo de los modelos

Para testear los modelos se utilizaron tres puntos de control, que no fueron incluidos en el cálculo de los mismos. Los resultados obtenidos en la determinación de las cotas oficiales fueron muy buenos:

	Nivel	∆N96-4P	EGM96	ME96-4P	DIF	∆N96-5P	ME96-5P	DIF
SGMM	13,710	-0,139	13,846	13,708	-0,002	-0,146	13,700	-0,010
N	12,022	-0,178	12,193	12,016	-0,006	-0,179	12,015	-0,008
BA	4,654	-0,224	4,890	4,665	0,011	-0,227	4,662	0,008

Tabla 15: Testeo con puntos de control

Autores: Jaime Betancur, Antonio Villaluenga

4.1.4 Estimación del error en los modelos

Para estimar el error que se comete con los modelos, se creó una superficie donde las coordenadas altimétricas (**z**) representan las diferencias entre el nuevo modelo generado y las cotas oficiales.

ME96-4P

Para este modelo los resultados fueron satisfactorios, encontrándose que en más del 93 % del área las diferencias no superaron los 2 cm, de todas formas existen áreas donde no es recomendable utilizarlo.

Intervalo (m)	Área (m²)	Porcentaje
±0,005	6183202	37,99 %
\pm 0,005 a \pm 0,015	7852319	48,24 %
\pm 0,015 a \pm 0,020	1200983	7,38 %
\pm 0,020 a \pm 0,030	621615	3,82 %
0,030 a 0,052	335805	2,06 %
0,052 a 0,064	82653	0,51 %

Tabla 16: Estimación de las diferencias con las cotas oficiales (ME96-4P)

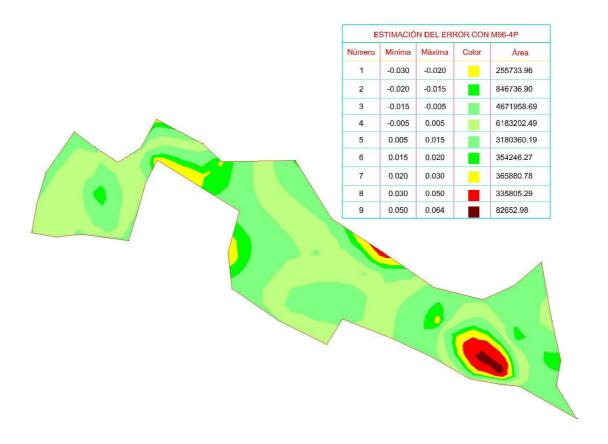


Fig. 34: Estimación del error en el modelo ME96-4P

Autores: Jaime Betancur, Antonio Villaluenga Tutor: Jorge Faure

ME96-5P

Los resultados con este modelo fueron también satisfactorios y muy similares a los obtenidos con el de 4 parámetros, pudiéndose observar diferencias menores a 2 cm en más de un 90 % del área:

Intervalo (m)	Área (m²)	Porcentaje
±0,005	6325713	38,86 %
\pm 0,005 a \pm 0,015	6691252	41,11 %
\pm 0,015 a \pm 0,020	1733959	10,65 %
\pm 0,020 a \pm 0,030	1206805	7,41 %
0,030 a 0,050	293630	1,80 %
0,050 a 0,058	25221	0,15 %

Tabla 17: Estimación de las diferencia con las cotas oficiales (ME96-5P)

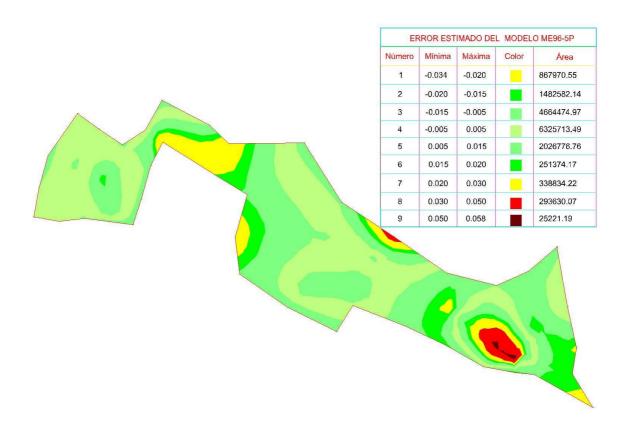


Fig. 35: Estimación del error en el modelo ME96-5P

4.1.5 Testeo de desniveles entre puntos de control

Se testearon los desniveles, obtenidos con los modelos, entre los puntos de control y se realizó una comparación con las cotas oficiales.

Modelo ME96-4P:

Puntos	Oficial	ME96-4P	Desniveles	Nivel	ME96-4P	Diferencias
SGMM	13,710	13,708	SGMM - N	-1,688	-1,692	0,004
N	12,022	12,016	N - BA	-7,368	-7,351	-0,017
BA	4,654	4,665	BA - SGMM	9,056	9,043	0,013

Tabla 18: Testeo de los desniveles con los puntos de control (ME96-4P).

Modelo ME96-5P:

Puntos	Oficial	ME96-5P	Desniveles	Nivel	ME96-5P	Diferencias
SGMM	13,710	13,700	SGMM - N	-1,688	-1,686	-0,002
N	12,022	12,015	N - BA	-7,368	-7,352	-0,016
BA	4,654	4,662	BA - SGMM	9,056	9,038	0,018

Tabla 19: Testeo de los desniveles con los puntos de control (ME96-5P).

4.2- EGM-08

Del análisis del comportamiento de N del modelo global EGM-08 en la zona de estudio se observó que su valor aumenta de este a oeste al igual que el EGM-96 y con valores similares al mismo.

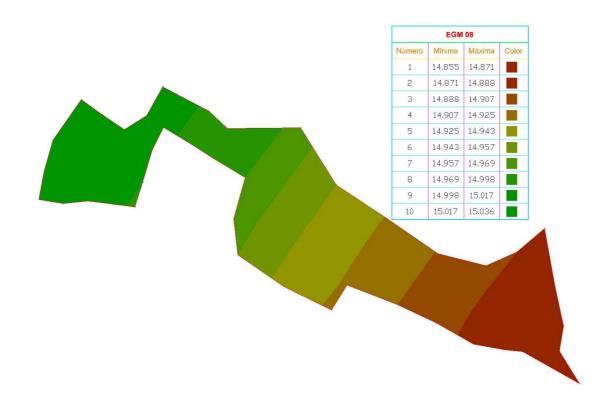


Fig. 36: Comportamiento del N del modelo EGM 08 en la zona.

4.2.1 Diferencias entre cotas oficiales y cotas obtenidas a partir del EGM-08

Se aplicó el modelo EGM-08 a las alturas elipsoidales, obteniéndose para cada punto una altura ortométrica que se compara con la cota oficial:

Nombre	Ondulación EGM08	Altura Ort. EGM08	Cotas Oficiales	Diferencia EGM08-Oficial
SGMP	14,855	8,045	7,810	-0,235
AN	14,864	3,936	3,706	-0,230
AO	14,867	2,243	2,027	-0,216
AP	14,875	2,665	2,436	-0,229
AQ	14,885	2,335	2,129	-0,206
AR	14,888	3,142	2,935	-0,207
AS	14,892	5,638	5,422	-0,216
AT	14,879	3,121	2,909	-0,212
AU	14,871	4,469	4,235	-0,234

AV	14,875	5,845	5,618	-0,227
AW	14,878	4,112	3,812	-0,300
AX	14,883	5,397	5,101	-0,296
AY	14,883	5,647	5,384	-0,263
AZ	14,895	6,915	6,672	-0,243
AE	15,016	14,394	14,170	-0,224
Α	14,969	12,721	12,509	-0,212
В	14,964	15,026	14,797	-0,229
С	14,943	13,274	13,045	-0,229
D	14,940	11,972	11,744	-0,228
Е	14,964	10,386	10,180	-0,206
F	14,957	3,309	3,083	-0,227
G	14,938	2,841	2,605	-0,236
Н	14,906	13,438	13,217	-0,221
1	14,924	13,433	13,170	-0,264
J	14,924	8,387	8,138	-0,250
K	14,907	4,807	4,571	-0,236
L	14,899	5,651	5,437	-0,214
М	14,925	11,371	11,148	-0,223
0	14,937	5,951	5,717	-0,234
Р	14,923	4,146	3,900	-0,246
Q	14,922	2,922	2,681	-0,241
AD	15,003	13,077	12,854	-0,223
AG	15,004	14,756	14,559	-0,197
AM	15,012	14,388	14,159	-0,229
AL	15,014	14,676	14,438	-0,238
AK	14,994	13,406	13,184	-0,222
AJ	14,985	13,665	13,466	-0,199
Al	14,983	15,067	14,857	-0,210
AH	14,992	15,338	15,143	-0,195
AC	15,014	11,466	11,214	-0,252
AB	15,010	7,030	6,794	-0,236
AA	15,003	6,977	6,726	-0,251
Z	14,995	7,275	7,046	-0,229
Υ	14,998	10,732	10,504	-0,228
R	15,026	13,584	13,355	-0,229
S	15,036	14,634	14,405	-0,229
U	15,035	11,615	11,373	-0,242
V	15,030	8,340	8,096	-0,244
W	15,025	8,055	7,814	-0,241
Х	15,017	6,003	5,759	-0,244
Т	15,025	13,825	13,598	-0,227

Tabla 20: Aplicación del modelo EGM-08 y diferencia con cotas oficiales.

Las diferencias obtenidas con respecto a las cotas oficiales varían en menor rango que el EGM-96: entre 30 cm y 20 cm, concentrándose las mayores diferencias en la zona de Delta del Tigre.

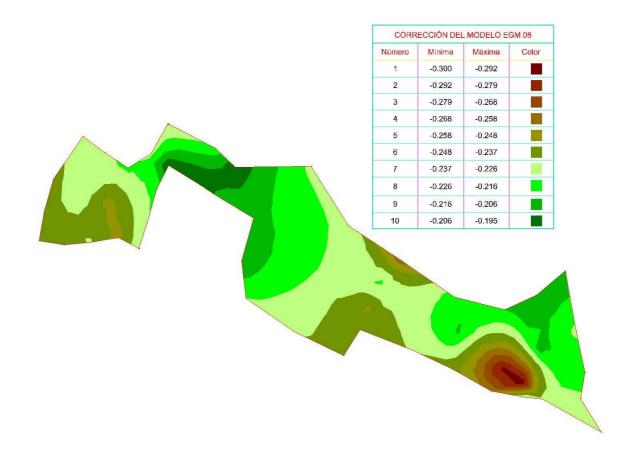


Fig. 37: Superficie comparativa entre el modelo EGM08 y la cota oficial

Se testeó la superficie con los tres puntos de control elegidos, donde en dos la diferencia es similar al EGM-96, pero en el tercero fue sensiblemente mayor para esta superficie:

Punto	Nivel	C sup.	EGM08	EGM08- C sup.	Diferencias
SGMM	13,710	-0,227	13,929	13,702	-0,008
N	12,022	-0,228	12,243	12,015	-0,007
BA	4,654	-0,235	4,915	4,680	0,026

Tabla 21: Testeo de la superficie formada por las correcciones

Aplicando la metodología de las curvas de nivel, se observa que tienen un comportamiento similar a las creadas a partir del modelo EGM96.

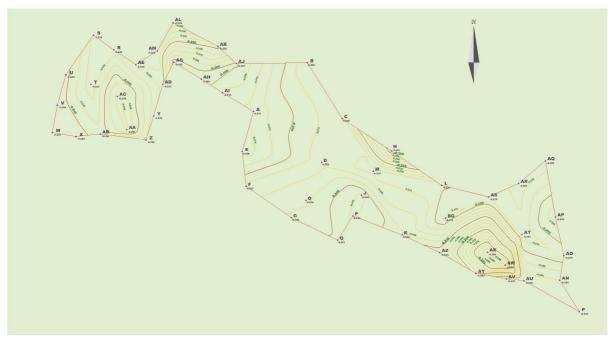


Fig. 38: Curvas de nivel de las diferencia ente las cotas obtenidas con EGM-08 y las oficiales

Se testearon las curvas en los puntos testigos y los resultados fueron similares a los obtenidos con la superficie:

Punto	Nivel	C curv.	EGM08	EGM08- C curv.	Diferencias
SGMM	13,710	-0,227	13,929	13,702	-0,008
N	12,022	-0,228	12,243	12,015	-0,007
BA	4,654	-0,234	4,915	4,681	0,027

Tabla 22: Testeo de las curvas formadas por las correcciones del EGM-08

4.2.2 Refinamiento del Modelo EGM-08

Luego de aplicar el mismo procedimiento que para el modelo EGM-96, se denominó ME08-4P al modelo obtenido a través de la función de 4 parámetros y ME08-5P al obtenido de la de 5 parámetros.

La expresión para el ΔN del modelo ME08-4P es la siguiente:

$$\Delta N_{i(ME08-4P)} = b_3 + b_0 \times \cos(\varphi_i) \times \cos(\lambda_i) + b_1 \times \cos(\varphi_i) \times sen(\lambda_i) + b_2 \times sen(\varphi_i) + v_i$$

 $b_3 = -8662,013672$ Siendo: $b_0 = 3976,744629$

 $b_1 = 5947,535156$ $b_2 = 4883,006836$

Mientras que para el modelo ME08-5P:

 $\Delta N_{i(ME08-5P)} = b_4 + b_0 \times \cos(\varphi_i) \times \cos(\lambda_i) + b_1 \times \cos(\varphi_i) \times sen(\lambda_i) + b_2 \times sen(\varphi_i) + b_3 \times sen^2(\varphi_i) + v_i$

Siendo: $b_4 = -37095,12500$

 $b_0 = -8039,52148$

 $b_1 = -12154,11328$

 $b_2 = 18234,93750$

 $b_3 =$ **168881,1875 0**

Punto	EGM08	∆N08-4P	ME08-4P	DIF	$\sigma_{_4}$	∆N08-5P	ME08-5P	DIF	$\sigma_{\scriptscriptstyle 5}$
SGMP	8,045	-0,247	7,798	-0,012	0,008	-0,261	7,784	-0,026	0,011
AN	3,936	-0,242	3,694	-0,012	0,007	-0,248	3,688	-0,018	0,007
AO	2,243	-0,236	2,007	-0,020	0,006	-0,237	2,006	-0,021	0,007
AP	2,665	-0,229	2,436	0,000	0,006	-0,223	2,441	0,005	0,009
AQ	2,335	-0,218	2,117	-0,012	0,007	-0,209	2,126	-0,003	0,011
AR	3,142	-0,224	2,918	-0,017	0,006	-0,218	2,924	-0,011	0,008
AS	5,638	-0,228	5,410	-0,012	0,004	-0,225	5,413	-0,009	0,006
AT	3,121	-0,234	2,887	-0,022	0,005	-0,234	2,887	-0,022	0,005
AU	4,469	-0,244	4,225	-0,010	0,005	-0,252	4,217	-0,018	0,007
AV	5,845	-0,244	5,601	-0,017	0,005	-0,254	5,591	-0,027	0,007
AW	4,112	-0,241	3,871	0,059	0,005	-0,248	3,864	0,052	0,005
AX	5,397	-0,240	5,157	0,056	0,004	-0,244	5,153	0,052	0,005
AY	5,647	-0,245	5,402	0,018	0,005	-0,255	5,392	0,008	0,007
AZ	6,915	-0,242	6,673	0,001	0,005	-0,250	6,665	-0,007	0,006
AE	14,394	-0,226	14,168	-0,002	0,004	-0,231	14,163	-0,007	0,005
Α	12,721	-0,226	12,495	-0,014	0,004	-0,228	12,493	-0,016	0,004
В	15,026	-0,213	14,813	0,016	0,006	-0,220	14,806	0,009	0,007
С	13,274	-0,221	13,053	0,008	0,005	-0,222	13,052	0,007	0,005
D	11,972	-0,231	11,741	-0,003	0,005	-0,232	11,740	-0,004	0,005
Е	10,386	-0,235	10,151	-0,029	0,004	-0,236	10,150	-0,030	0,005
F	3,309	-0,242	3,067	-0,015	0,005	-0,244	3,065	-0,018	0,006
G	2,841	-0,245	2,596	-0,009	0,006	-0,250	2,591	-0,014	0,007
Н	13,438	-0,228	13,210	-0,008	0,004	-0,227	13,211	-0,006	0,005
	13,433	-0,225	13,208	0,039	0,005	-0,223	13,210	0,040	0,006
J	8,387	-0,235	8,152	0,014	0,005	-0,237	8,150	0,012	0,005
K	4,807	-0,241	4,566	-0,005	0,005	-0,247	4,560	-0,011	0,005
L	5,651	-0,235	5,416	-0,021	0,004	-0,236	5,415	-0,022	0,004
М	11,371	-0,230	11,141	-0,006	0,004	-0,230	11,141	-0,006	0,005
0	5,951	-0,229	5,722	0,005	0,005	-0,230	5,722	0,005	0,005
Р	4,146	-0,240	3,906	0,006	0,005	-0,244	3,902	0,002	0,005
Q	2,922	-0,246	2,676	-0,006	0,006	-0,254	2,668	-0,014	0,007
AD	13,077	-0,228	12,849	-0,005	0,004	-0,231	12,846	-0,008	0,004
AG	14,756	-0,222	14,534	-0,025	0,004	-0,229	14,527	-0,032	0,005
AM	14,388	-0,222	14,166	0,007	0,005	-0,230	14,158	-0,001	0,006

Autores: Jaime Betancur, Antonio Villaluenga

A 1	44070	0.045	4.4.404	0.000	0.000	0.000	4 4 4 4 7	0.000	0.040
AL	14,676	-0,215	14,461	0,023	0,006	-0,229	14,447	0,009	0,010
AK	13,406	-0,216	13,190	0,006	0,005	-0,226	13,180	-0,004	0,008
AJ	13,665	-0,218	13,447	-0,019	0,005	-0,225	13,440	-0,026	0,006
Al	15,067	-0,225	14,842	-0,015	0,004	-0,228	14,839	-0,018	0,004
AH	15,338	-0,224	15,114	-0,029	0,004	-0,228	15,110	-0,033	0,004
AC	11,466	-0,234	11,232	0,018	0,004	-0,235	11,231	0,017	0,005
AB	7,03	-0,243	6,787	-0,007	0,005	-0,241	6,789	-0,005	0,007
AA	6,977	-0,239	6,738	0,012	0,005	-0,239	6,738	0,012	0,005
Z	7,275	-0,240	7,035	-0,011	0,005	-0,240	7,035	-0,011	0,005
Υ	10,732	-0,235	10,497	-0,007	0,004	-0,235	10,497	-0,007	0,004
R	13,584	-0,225	13,359	0,004	0,005	-0,232	13,352	-0,003	0,006
S	14,634	-0,224	14,410	0,005	0,006	-0,233	14,401	-0,004	0,008
U	11,615	-0,234	11,381	0,008	0,006	-0,235	11,380	0,007	0,006
V	8,34	-0,241	8,099	0,003	0,006	-0,238	8,102	0,006	0,008
W	8,055	-0,246	7,809	-0,005	0,007	-0,243	7,812	-0,002	0,009
X	6,003	-0,245	5,758	-0,001	0,006	-0,242	5,761	0,002	0,008
Т	13,825	-0,234	13,591	-0,007	0,005	-0,235	13,590	-0,008	0,005

Tabla 23: Refinamiento del modelo EGM-08.

Los valores de las diferencias con la cotas oficiales en promedio (PROM.), promedio en valor absoluto (PROM.(V.A)) y mínima (MIN.), son similares a los obtenidos para el modelo EGM-96, difiriendo levemente la máxima (MAX.):

4	PROM.	-0,001
PAI	PROM (V.A.)	0,014
PARAM.	MAX.	0,059
	MIN.	0,000

Ŋ	PROM	-0,004
PA	PROM (V.A.)	0,014
PARAM.	MAX.	0,052
	MIN.	0,001

Tabla 24: Estadística de los modelos creados a partir del EGM-08

4.2.3 Testeo de los modelos

Con los mismo tres puntos de control con que se trabajó anteriormente, se hizo un testeo de los nuevos modelos, dando resultados satisfactorios:

	Nivel	ΔN08-4P	EGM08	ME08-4P	DIF	ΔN96-5P	ME08-5P	DIF
SGMM	13,710	-0,222	13,929	13,707	-0,003	-0,230	13,699	-0,011
N	12,022	-0,229	12,243	12,014	-0,008	-0,230	12,014	-0,008
BA	4,654	-0,237	4,915	4,678	0,024	-0,239	4,676	0,022

Tabla 25: Testeo con puntos de control

Autores: Jaime Betancur, Antonio Villaluenga

4.2.4 Estimación del error en los modelos

ME08-4P

Para este modelo los resultados fueron satisfactorios, encontrándose que en más del 92 % del área las diferencias no superaron los 2 cm, de todas formas existen áreas donde no es recomendable utilizarlo.

Intervalo (m)	Área (m²)	Porcentaje
±0,005	6236746	38,47 %
\pm 0,005 a \pm 0,015	7158266	44,16 %
\pm 0,015 a \pm 0,020	1601477	9,88 %
\pm 0,020 a \pm 0,030	772309	4,76 %
0,030 a 0,050	393182	2,43 %
0,050 a 0,059	47974	0,30 %

Tabla 26: Estimación de las diferencias con las cotas oficiales (ME08-4P)

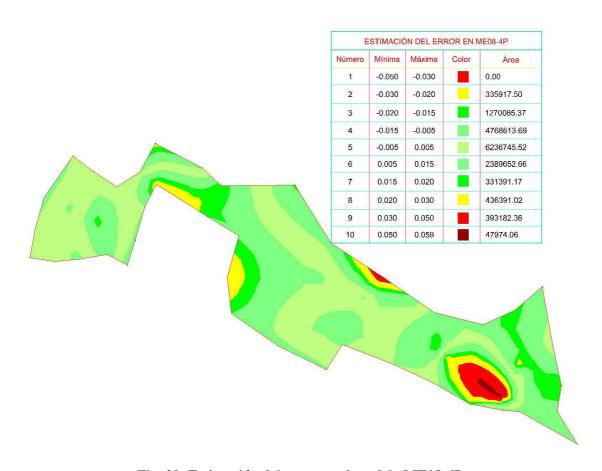


Fig. 39: Estimación del error en el modelo ME08-4P

ME08-5P

Los resultados con este modelo fueron también satisfactorios y similares a los obtenidos con el de 4 parámetros, pudiéndose observar diferencias menores a 2 cm en más de un 87 % del área:

Intervalo (m)	Área (m²)	Porcentaje
± 0,005	5583339	34,30 %
\pm 0,005 a \pm 0,015	6680961	41,05 %
\pm 0,015 a \pm 0,020	1924846	11,83 %
\pm 0,020 a \pm 0,030	1729917	10,63 %
0,030 a 0,052	357515	2,20 %
> 0,052	0	0,00 %

Tabla 27: Estimación de las diferencia con las cotas oficiales (ME08-5P).

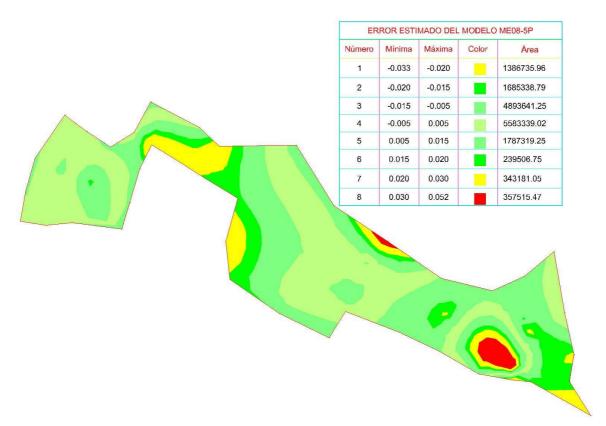


Fig. 40: Estimación del error en el modelo ME08-5P

4.2.5 Testeo de desniveles entre puntos de control

Se testearon los desniveles, obtenidos con los modelos, entre los puntos de control y se realizó una comparación con las cotas oficiales.

Modelo ME08-4P:

Puntos	Oficial	ME08-4P	Desniveles	Nivel	ME08-4P	Diferencias
SGMM	13,710	13,707	SGMM - N	-1,688	-1,693	0,005
N	12,022	12,014	N - BA	-7,368	-7,336	-0,032
BA	4,654	4,678	BA - SGMM	9,056	9,029	0,027

Tabla 28: Testeo de los desniveles con los puntos de control (ME08-4P).

Modelo ME08-5P:

Puntos	Oficial	ME08-5P	Desniveles	Nivel	ME08-5P	Diferencias
SGMM	13,710	13,699	SGMM - N	-1,688	-1,685	-0,003
N	12,022	12,014	N - BA	-7,368	-7,338	-0,030
BA	4,654	4,676	BA - SGMM	9,056	9,023	0,033

Tabla 29: Testeo de los desniveles con los puntos de control (ME08-5P).

4.3- <u>DMA-10x10</u>

Del análisis del comportamiento de N del modelo global DMA-10x10 se observó que su valor aumenta de este a oeste al igual que el EGM-96, pero sus valores varían en el orden de los 4,5 m con respecto a los de este último.

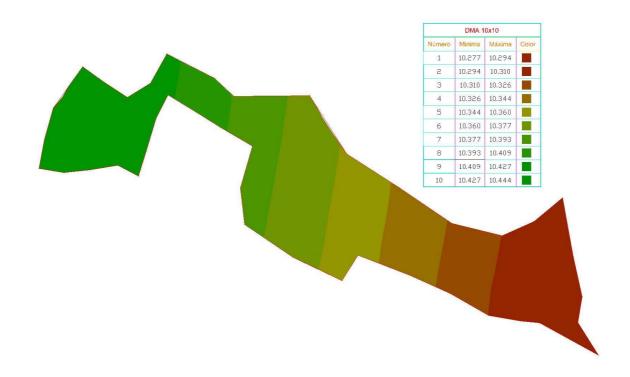


Fig. 41: Comportamiento del N del modelo DMA-10x10 en la zona.

4.3.1 Diferencias entre cotas oficiales y cotas obtenidas a partir del DMA

Se aplicó el modelo DMA a las alturas elipsoidales, obteniéndose para cada punto una altura ortométrica que se compara con la cota oficial:

Nombre	Ondulación DMA	Altura Ort. DMA	Cotas Oficiales	Diferencia DMA-Oficial
SGMP	10,277	12,623	7,810	4,813
AN	10,284	8,516	3,706	4,810
AO	10,284	6,826	2,027	4,799
AP	10,289	7,251	2,436	4,815
AQ	10,295	6,925	2,129	4,796
AR	10,302	7,728	2,935	4,793
AS	10,310	10,220	5,422	4,798
AT	10,298	7,702	2,909	4,793
AU	10,295	9,045	4,235	4,810
AV	10,300	10,420	5,618	4,802

AW	10,301	8,689	3,812	4,877
AX	10,307	9,973	5,101	4,872
AY	10,310	10,220	5,384	4,836
AZ	10,322	11,488	6,672	4,816
AE	10,423	18,987	14,170	4,817
Α	10,385	17,305	12,509	4,796
В	10,371	19,619	14,797	4,822
С	10,358	17,859	13,045	4,814
D	10,362	16,550	11,744	4,806
E	10,386	14,964	10,180	4,784
F	10,383	7,883	3,083	4,801
G	10,368	7,411	2,605	4,806
Н	10,325	18,019	13,217	4,802
	10,341	18,016	13,170	4,847
J	10,348	12,963	8,138	4,826
K	10,334	9,380	4,571	4,809
L	10,322	10,228	5,437	4,791
М	10,346	15,950	11,148	4,802
0	10,365	10,523	5,717	4,806
Р	10,350	8,719	3,900	4,819
Q	10,353	7,491	2,681	4,810
AD	10,414	17,666	12,854	4,812
AG	10,411	19,349	14,559	4,790
AM	10,417	18,983	14,159	4,824
AL	10,413	19,277	14,438	4,839
AK	10,399	18,001	13,184	4,817
AJ	10,392	18,258	13,466	4,792
Al	10,395	19,655	14,857	4,798
AH	10,402	19,928	15,143	4,785
AC	10,427	16,053	11,214	4,839
AB	10,430	11,610	6,794	4,816
AA	10,422	11,558	6,726	4,832
Z	10,416	11,854	7,046	4,808
Υ	10,415	15,315	10,504	4,811
R	10,430	18,180	13,355	4,825
S	10,437	19,233	14,405	4,828
U	10,443	16,207	11,373	4,834
V	10,444	12,926	8,096	4,830
W	10,444	12,636	7,814	4,822
Х	10,437	10,583	5,759	4,824
Т	10,435	18,415	13,598	4,817

Tabla 30: Aplicación del modelo DMA-10x10 y diferencia con cotas oficiales.

Se realizó la superficie, de la cual se obtuvieron las correcciones del modelo:

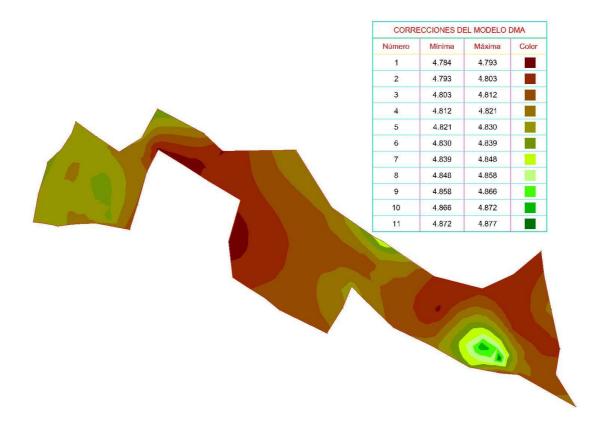


Fig. 42: Superficie comparativa entre el modelo DMA 10x10 y la cota oficial

Se testeó la superficie con los tres puntos de control elegidos, obteniéndose para las diferencias valores muy similares a los modelos anteriores:

Punto	Nivel	C sup.	DMA	DMA- C sup.	Diferencias
SGMM	13,710	4,821	18,524	13,703	-0,007
N	12,022	4,808	16,823	12,015	-0,007
BA	4,654	4,811	9,491	4,680	0,026

Tabla 31: Testeo de la superficie formada por las correcciones.

Aplicando la metodología de las curvas de nivel, se observa que tienen un comportamiento similar a las creadas a partir de los modelos anteriores:

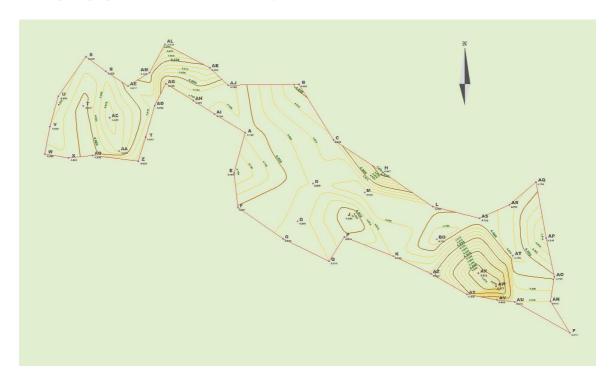


Fig. 43: Curvas de nivel de las diferencia ente las cotas obtenidas con DMA y las oficiales

Se testearon las curvas en los puntos testigos y los resultados fueron similares a los obtenidos con la superficie:

Punto	Nivel	C curv.	DMA	DMA- C curv.	Diferencias
SGMM	13,710	4,821	18,524	13,703	-0,007
N	12,022	4,807	16,823	12,016	-0,006
BA	4,654	4,810	9,491	4,681	0,027

Tabla 32: Testeo de las curvas formadas por las correcciones del DMA.

4.3.2 Refinamiento del Modelo DMA

Se denominó MDMA-4P al modelo obtenido a través de la función de 4 parámetros y MDMA-5P al obtenido de la de 5 parámetros.

La expresión para el ΔN del modelo MDMA-4P es la siguiente:

$$\Delta N_{i(MDMA-4P)} = b_3 + b_0 \times \cos(\varphi_i) \times \cos(\lambda_i) + b_1 \times \cos(\varphi_i) \times sen(\lambda_i) + b_2 \times sen(\varphi_i) + v_i$$

Siendo: $b_3 = 3858,32813$ $b_0 = -17551,60156$

 $b_1 = -26407,20313$ $b_2 = -21978,62500$

Mientras que para el modelo MDMA-5P:

 $\Delta N_{i(MDMA-5P)} = b_4 + b_0 \times \cos(\varphi_i) \times \cos(\lambda_i) + b_1 \times \cos(\varphi_i) \times sen(\lambda_i) + b_2 \times sen(\varphi_i) + b_3 \times sen^2(\varphi_i) + v_i$

Siendo: $b_4 = 74700,250$

 $b_0 = -2288,875$

 $b_1 = -3414,875$

 $b_2 = -247388,000$

 $b_3 = 214509,000$

Punto	DMA	∆NDMA-4P	MDMA-4P	DIF	$\sigma_{_4}$	ΔNDMA-	MDMA-5P	DIF	$\sigma_{\scriptscriptstyle 5}$
SGMP	12,623	4,797	7,826	0,016	0,015	5,346	7,277	-0,533	0,312
AN	8,516	4,793	3,723	0,017	0,012	5,333	3,183	-0,523	0,197
AO	6,826	4,790	2,036	0,009	0,011	5,323	1,503	-0,524	0,189
AP	7,251	4,787	2,464	0,028	0,011	5,313	1,938	-0,498	0,240
AQ	6,925	4,783	2,142	0,013	0,013	5,304	1,621	-0,508	0,314
AR	7,728	4,783	2,945	0,010	0,010	5,308	2,420	-0,515	0,235
AS	10,220	4,783	5,437	0,015	0,008	5,311	4,909	-0,513	0,174
AT	7,702	4,787	2,915	0,006	0,008	5,319	2,383	-0,526	0,150
AU	9,045	4,791	4,254	0,019	0,010	5,335	3,710	-0,525	0,192
AV	10,420	4,790	5,630	0,012	0,009	5,335	5,085	-0,533	0,193
AW	8,689	4,789	3,900	0,088	0,008	5,329	3,360	-0,452	0,148
AX	9,973	4,787	5,186	0,085	0,008	5,326	4,647	-0,454	0,126
AY	10,220	4,789	5,431	0,047	0,009	5,334	4,886	-0,498	0,193
AZ	11,488	4,786	6,702	0,030	0,008	5,328	6,160	-0,512	0,155
AE	18,987	4,790	14,197	0,027	0,008	5,328	13,659	-0,511	0,132
Α	17,305	4,782	12,523	0,014	0,008	5,317	11,988	-0,521	0,124
В	19,619	4,778	14,841	0,044	0,011	5,319	14,300	-0,498	0,200
С	17,859	4,779	13,080	0,035	0,009	5,312	12,547	-0,498	0,149
D	16,550	4,781	11,769	0,025	0,008	5,315	11,235	-0,508	0,139
E	14,964	4,784	10,180	0,000	0,008	5,318	9,646	-0,534	0,133
F	7,883	4,786	3,097	0,014	0,010	5,322	2,561	-0,521	0,160
G	7,411	4,786	2,625	0,020	0,011	5,326	2,085	-0,520	0,180
Н	18,019	4,781	13,238	0,021	0,007	5,312	12,707	-0,510	0,149
I	18,016	4,779	13,237	0,067	0,008	5,310	12,706	-0,464	0,154
J	12,963	4,782	8,181	0,043	0,008	5,317	7,646	-0,492	0,134
K	9,380	4,785	4,595	0,024	0,008	5,325	4,055	-0,516	0,146
L	10,228	4,784	5,444	0,008	0,007	5,318	4,910	-0,526	0,119
M	15,950	4,781	11,169	0,022	0,008	5,313	10,637	-0,511	0,143
0	10,523	4,781	5,742	0,025	0,008	5,313	5,210	-0,508	0,141
Р	8,719	4,784	3,935	0,035	0,009	5,322	3,397	-0,503	0,148
Q	7,491	4,786	2,705	0,023	0,011	5,329	2,162	-0,520	0,204
AD	17,666	4,788	12,878	0,024	0,007	5,324	12,342	-0,512	0,107
AG	19,349	4,786	14,563	0,004	0,008	5,327	14,022	-0,537	0,144
AM	18,983	4,787	14,196	0,037	0,008	5,330	13,653	-0,506	0,172

Autores: Jaime Betancur, Antonio Villaluenga

AL	19,277	4,786	14,491	0,053	0,011	5,336	13,941	-0,497	0,281
AK	18,001	4,782	13,219	0,035	0,010	5,327	12,674	-0,510	0,208
AJ	18,258	4,782	13,476	0,010	0,009	5,323	12,935	-0,531	0,167
Al	19,655	4,783	14,872	0,015	0,007	5,320	14,335	-0,522	0,116
AH	19,928	4,784	15,144	0,001	0,007	5,323	14,605	-0,538	0,122
AC	16,053	4,792	11,261	0,047	0,007	5,326	10,727	-0,487	0,129
AB	11,610	4,796	6,814	0,020	0,010	5,326	6,284	-0,510	0,181
AA	11,558	4,793	6,765	0,039	0,008	5,324	6,234	-0,492	0,149
Z	11,854	4,791	7,063	0,017	0,008	5,323	6,531	-0,515	0,148
Υ	15,315	4,790	10,525	0,021	0,007	5,323	9,992	-0,512	0,122
R	18,180	4,792	13,388	0,033	0,009	5,333	12,847	-0,508	0,169
S	19,233	4,794	14,439	0,034	0,011	5,337	13,896	-0,509	0,217
U	16,207	4,798	11,409	0,036	0,011	5,331	10,876	-0,497	0,180
V	12,926	4,800	8,126	0,030	0,012	5,329	7,597	-0,499	0,211
W	12,636	4,801	7,835	0,021	0,013	5,329	7,307	-0,507	0,248
Χ	10,583	4,799	5,784	0,025	0,011	5,327	5,256	-0,503	0,213
Т	18,415	4,795	13,620	0,022	0,009	5,328	13,087	-0,511	0,150

Tabla 33: Refinamiento del modelo DMA-10x10.

Los resultados obtenidos fueron muy diferentes en cada refinamiento, en el de 4 parámetros si bien el promedio y el valor máximo son más altos que los de los otros modelos, no resultan tan diferentes de los valores de las cotas oficiales como sucede en el caso del modelo de 5 parámetros, cuya diferencia promedio es de 0.50 m:

4	PROM.	-0,027
PA	PROM (V.A.)	0,027
PARAM.	MAX.	0,088
	MIN.	0,000

5	PROM	0,509
PA	PROM (V.A.)	0,509
PARAM.	MAX.	0,538
	MIN.	0,453

Tabla 34: Estadística de los modelos creados a partir del DMA-10x10

4.3.3 Testeo de los modelos

Con los mismo tres puntos de control con que se trabajó anteriormente, se hizo un testeo de los nuevos modelos, dando resultados aceptables en el caso del modelo de 4 parámetros, no así para el de 5 parámetros con el cual no se puede trabajar:

	Nivel	ΔNDMA-4P	DMA	MDMA-4P	DIF	ΔNDMA-5P	MDMA-5P	DIF
SGMM	13,710	4,787	18,524	13,737	0,027	5.329	13,195	-0,515
N	12,022	4,781	16,823	12,042	0,020	5.313	11,510	-0,512
BA	4,654	4,785	9,491	4,706	0,052	5.320	4,171	-0,483

Tabla 35: Testeo con puntos de control

Autores: Jaime Betancur, Antonio Villaluenga

4.3.4 Estimación del error en los modelos

MDMA-4P

Para este modelo los resultados no fueron muy buenos, encontrándose que en menos del 30 % del área las diferencias son inferiores a los 2 cm, por lo que no resulta muy útil su aplicación.

Intervalo (m)	Área (m²)	Porcentaje
±0,005	98875	0,61 %
\pm 0,005 a \pm 0,015	2385067	14,65 %
± 0,015 a ± 0,020	2510951	15,43 %
\pm 0,020 a \pm 0,030	5924506	36,40 %
0,030 a 0,050	4708209	28,93 %
0,050 a 0,088	648969	3,99 %

Tabla 36: Estimación de las diferencias con las cotas oficiales (MDMA-4P)

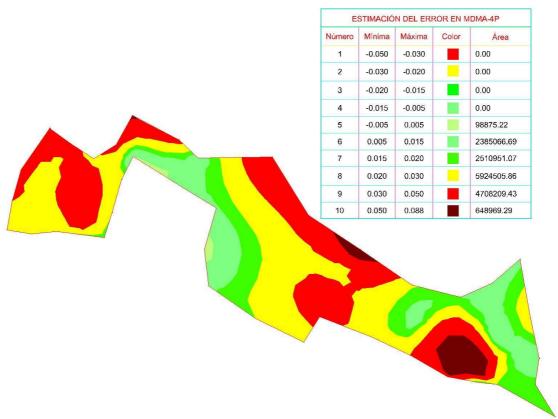


Fig. 44: Estimación del error en el modelo MDMA-4P

MDMA-5P

Este modelo no es aplicable debido a las diferencias existentes, las cuales superan los 50 cm para gran parte del área..

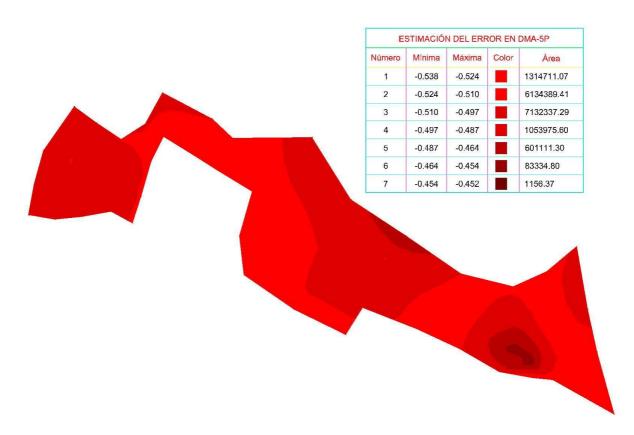


Fig. 45: Estimación del error en el modelo MDMA-5P

4.3.5 Testeo de desniveles entre puntos de control

Se testearon los desniveles, obtenidos con los modelos, entre los puntos de control y se realizó una comparación con las cotas oficiales. Del testeo surge que las diferencias de desniveles en cada uno de los modelos, no difieren mucho de las obtenidas entre cotas oficiales, lo que hace suponer que el cálculo del modelo ha sido correcto, las diferencias grandes surgen cuando se comparan alturas absolutas.

Modelo MDMA-4P:

Puntos	Oficial	MDMA-4P	Desniveles	Nivel	MDMA-4P	Diferencias
SGMM	13,710	13,737	SGMM - N	-1,688	-1,694	0,006
N	12,022	12,042	N - BA	-7,368	-7,336	-0,032
BA	4,654	4,706	BA - SGMM	9,056	9,030	0,026

Tabla 37: Testeo de los desniveles con los puntos de control (MDMA-4P).

Modelo MDMA-5P:

Puntos	Oficial	MDMA-5P	Desniveles	Nivel	MDMA-5P	Diferencias
SGMM	13,710	13,195	SGMM - N	-1,688	-1,685	-0,003
N	12,022	11,510	N - BA	-7,368	-7,339	-0,029
BA	4,654	4,171	BA - SGMM	9,056	9,024	0,032

Tabla 38: Testeo de los desniveles con los puntos de control (MDMA-5P).

4.4- OSU91-A

Del análisis del comportamiento de N del modelo global OSU91-A se observó que su valor aumenta de este a oeste al igual que el EGM-96, pero sus valores varían en el orden de 1 m con respecto a los de este último.

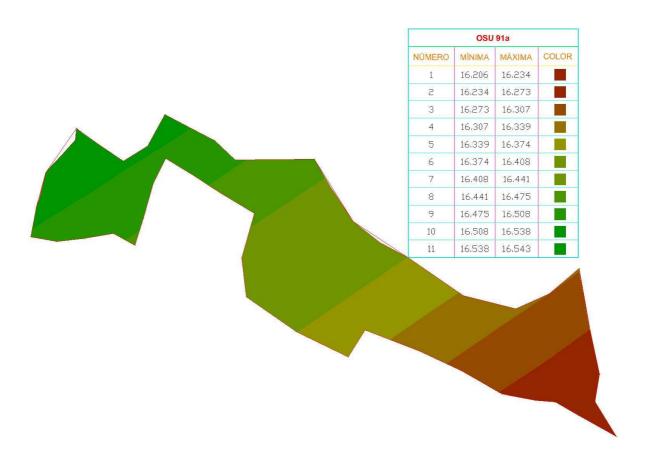


Fig. 46: Comportamiento del N del modelo OSU 91-A en la zona

4.4.1 Diferencias entre cotas oficiales y cotas obtenidas a partir del OSU91

Se aplicó el modelo OSU91 a las alturas elipsoidales, obteniéndose para cada punto una altura ortométrica que se compara con la cota oficial:

Nombre	Ondulación OSU91	Altura Ort. OSU91	Cotas Oficiales	Diferencia OSU91-Oficial
SGMP	16,206	6,694	7,810	-1,116
AN	16,233	2,567	3,706	-1,139
AO	16,246	0,864	2,027	-1,163
AP	16,272	1,268	2,436	-1,168
AQ	16,309	0,911	2,129	-1,218
AR	16,307	1,723	2,935	-1,212

AS	16 211	4 240	E 400	1 202
AT	16,311 16,276	4,219	5,422	-1,203
		1,724	2,909	-1,185
AU	16,248	3,092	4,235	-1,143
AV	16,256	4,464	5,618	-1,154
AW	16,265	2,725	3,812	-1,087
AX	16,279	4,001	5,101	-1,100
AY	16,271	4,259	5,384	-1,125
AZ	16,298	5,512	6,672	-1,160
AE	16,513	12,897	14,170	-1,273
Α	16,447	11,243	12,509	-1,266
В	16,454	13,536	14,797	-1,261
С	16,411	11,806	13,045	-1,239
D	16,394	10,518	11,744	-1,226
E	16,429	8,921	10,180	-1,259
F	16,409	1,857	3,083	-1,226
G	16,375	1,404	2,605	-1,201
Н	16,336	12,008	13,217	-1,209
I	16,374	11,983	13,170	-1,187
J	16,361	6,950	8,138	-1,188
K	16,323	3,391	4,571	-1,180
L	16,316	4,234	5,437	-1,203
M	16,370	9,926	11,148	-1,222
0	16,379	4,509	5,717	-1,208
Р	16,353	2,716	3,900	-1,184
Q	16,345	1,499	2,681	-1,182
AD	16,494	11,586	12,854	-1,268
AG	16,502	13,258	14,559	-1,301
AM	16,513	12,887	14,159	-1,272
AL	16,523	13,167	14,438	-1,271
AK	16,495	11,905	13,184	-1,279
AJ	16,479	12,171	13,466	-1,295
Al	16,468	13,582	14,857	-1,275
AH	16,483	13,847	15,143	-1,296
AC	16,503	9,977	11,214	-1,237
AB	16,488	5,552	6,794	-1,242
AA	16,482	5,498	6,726	-1,228
Z	16,470	5,800	7,046	-1,246
Υ	16,480	9,250	10,504	-1,254
R	16,528	12,082	13,355	-1,273
S	16,543	13,127	14,405	-1,278
U	16,531	10,119	11,373	-1,254
V	16,518	6,852	8,096	-1,244
W	16,505	6,575	7,814	-1,239
X	16,495	4,525	5,759	-1,234
T	16,518	12,332	13,598	-1,266
I	10,510	12,332	13,330	-1,200

Tabla 39: Aplicación del modelo OSU91 y diferencia con cotas oficiales.

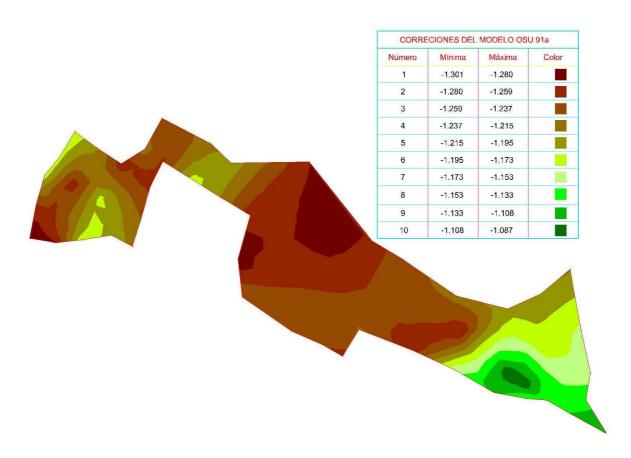


Fig. 47: Superficie comparativa entre el modelo OSU 91 y la cota oficial

Se testeó la superficie con los tres puntos de control elegidos, obteniéndose para las diferencias valores muy similares a los modelos anteriores, lo que indica que independientemente del modelo que se utilice, las correcciones que se obtienen por superficie son buenas, teniendo el inconveniente de la poca practicidad de su aplicación cuando se toman muchas observaciones.

Punto	Nivel	C sup.	OSU91	OSU91- C sup.	Diferencias
SGMM	13,710	-1,273	12,429	13,702	-0,008
N	12,022	-1,229	10,786	12,015	-0,007
BA	4,654	-1,176	3,504	4,680	0,026

Tabla 40: Testeo de la superficie formada por las correcciones

Aplicando la metodología de las curvas de nivel, se observa que tienen un comportamiento similar a las creadas a partir de los modelos anteriores:

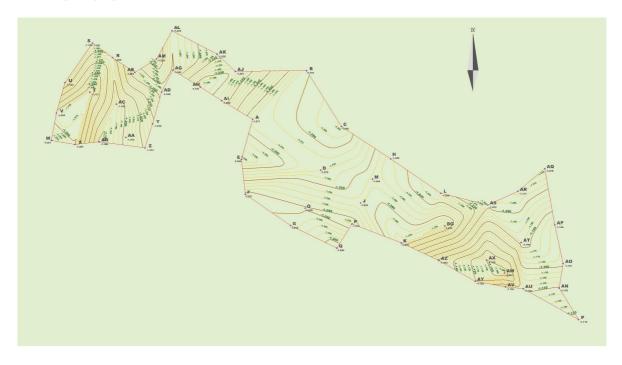


Fig. 48: Curvas de nivel de las diferencia ente las cotas obtenidas con OSU91 y las oficiales.

Se testearon las curvas en los puntos testigos y los resultados fueron similares a los obtenidos con la superficie:

Punto	Nivel	C curv.	OSU91	OSU91- C curv.	Diferencias
SGMM	13,710	-1,231	12,429	13,660	-0,050
N	12,022	-1,275	10,786	12,061	-0,039
BA	4,654	-1,227	3,504	4,731	0,077

Tabla 41: Testeo de las curvas formadas por las correcciones del OSU91.

4.4.2 Refinamiento del Modelo OSU91

Se denominó MOSU-4P al modelo obtenido a través de la función de 4 parámetros y MOSU-5P al obtenido de la de 5 parámetros.

La expresión para el ΔN del modelo MOSU-4P es la siguiente:

$$\Delta N_{i(MOSU-4P)} = b_3 + b_0 \times \cos(\varphi_i) \times \cos(\lambda_i) + b_1 \times \cos(\varphi_i) \times sen(\lambda_i) + b_2 \times sen(\varphi_i) + v_i$$

Siendo: $b_3 = 54149,73047$ $b_0 = -24660,66797$

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA DICIEMBRE 2009

 $b_1 = -37156,26172$ $b_2 = -30718,48438$

Mientras que para el modelo MOSU-5P:

 $\Delta N_{i(MOSU-5P)} = b_4 + b_0 \times \cos(\varphi_i) \times \cos(\lambda_i) + b_1 \times \cos(\varphi_i) \times sen(\lambda_i) + b_2 \times sen(\varphi_i) + b_3 \times sen^2(\varphi_i) + v_i$

Siendo: $b_4 = 91318,3593800$

 $b_0 = -8952.6460625$

 $b_1 = -13493.2500000$

 $b_2 = -262705,00000000$

 $b_3 = 220766.37500000$

Punto	osu	∆NOSU-4P	MOSU-4P	DIF	$\sigma_{_4}$	ΔNOSU-5P	MOSU-5P	DIF	$\sigma_{\scriptscriptstyle 5}$
SGMP	6,69	-1,121	7,815	0,005	0,011	-1,347	8,041	0,231	0,155
AN	2,56	-1,144	3,711	0,005	0,008	-1,379	3,946	0,240	0,098
AO	0,86	-1,159	2,023	-0,004	0,008	-1,401	2,265	0,238	0,094
AP	1,26	-1,183	2,451	0,015	0,008	-1,433	2,701	0,265	0,119
AQ	0,91	-1,217	2,128	-0,001	0,010	-1,471	2,382	0,253	0,156
AR	1,72	-1,208	2,931	-0,004	0,007	-1,458	3,181	0,246	0,117
AS	4,21	-1,204	5,423	0,001	0,005	-1,451	5,670	0,248	0,086
AT	1,72	-1,177	2,901	-0,008	0,006	-1,421	3,145	0,236	0,074
AU	3,09	-1,149	4,241	0,006	0,007	-1,381	4,473	0,238	0,096
AV	4,46	-1,153	5,617	-0,001	0,006	-1,383	5,847	0,229	0,096
AW	2,72	-1,161	3,886	0,074	0,006	-1,396	4,121	0,309	0,074
AX	4,00	-1,171	5,172	0,071	0,005	-1,408	5,409	0,308	0,063
AY	4,25	-1,160	5,419	0,035	0,006	-1,390	5,649	0,265	0,096
AZ	5,51	-1,176	6,688	0,016	0,006	-1,410	6,922	0,250	0,077
AE	12,8	-1,288	14,185	0,015	0,005	-1,524	14,421	0,251	0,065
Α	11,2	-1,266	12,509	0,000	0,005	-1,506	12,749	0,240	0,062
В	13,5	-1,290	14,826	0,029	0,008	-1,524	15,060	0,262	0,099
С	11,8	-1,260	13,066	0,021	0,006	-1,501	13,307	0,262	0,074
D	10,5	-1,237	11,755	0,011	0,006	-1,479	11,997	0,253	0,069
Е	8,92	-1,244	10,165	-0,015	0,006	-1,486	10,407	0,227	0,066
F	1,85	-1,225	3,082	-0,001	0,007	-1,464	3,321	0,239	0,079
G	1,40	-1,206	2,610	0,005	0,008	-1,442	2,846	0,241	0,090
Н	12,0	-1,216	13,224	0,006	0,005	-1,461	13,469	0,252	0,074
	11,9	-1,239	13,222	0,053	0,006	-1,483	13,466	0,297	0,077
J	6,95	-1,216	8,166	0,029	0,006	-1,457	8,407	0,269	0,067
K	3,39	-1,190	4,581	0,010	0,006	-1,426	4,817	0,246	0,072
L	4,23	-1,196	5,430	-0,006	0,005	-1,437	5,671	0,235	0,059
М	9,92	-1,229	11,155	0,007	0,006	-1,472	11,398	0,250	0,071
0	4,50	-1,243	5,752	0,035	0,006	-1,485	5,994	0,277	0,070
Р	2,71	-1,205	3,921	0,021	0,007	-1,442	4,158	0,258	0,073
Q	1,49	-1,191	2,690	0,009	0,008	-1,423	2,922	0,241	0,102
AD	11,5	-1,279	12,865	0,011	0,005	-1,517	13,103	0,249	0,053
AG	13,2	-1,291	14,549	-0,010	0,005	-1,525	14,783	0,224	0,072
AM	12,8	-1,296	14,183	0,024	0,006	-1,528	14,415	0,256	0,085

Autores: Jaime Betancur, Antonio Villaluenga

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA **DICIEMBRE 2009**

AL	13,1	-1,310	14,477	0,039	0,008	-1,535	14,702	0,264	0,140
AK	11,9	-1,300	13,205	0,021	0,007	-1,529	13,434	0,250	0,103
AJ	12,1	-1,291	13,462	-0,004	0,006	-1,524	13,695	0,229	0,083
Al	13,5	-1,276	14,858	0,001	0,005	-1,514	15,096	0,239	0,058
AH	13,8	-1,283	15,130	-0,013	0,005	-1,519	15,366	0,223	0,061
AC	9,97	-1,271	11,248	0,034	0,005	-1,512	11,489	0,275	0,064
AB	5,55	-1,249	6,801	0,007	0,007	-1,494	7,046	0,252	0,090
AA	5,49	-1,253	6,751	0,025	0,006	-1,497	6,995	0,269	0,074
Z	5,80	-1,249	7,049	0,003	0,006	-1,492	7,292	0,246	0,073
Υ	9,25	-1,262	10,512	0,008	0,005	-1,504	10,754	0,250	0,060
R	12,0	-1,294	13,376	0,021	0,007	-1,528	13,610	0,255	0,084
S	13,1	-1,300	14,427	0,022	0,008	-1,531	14,658	0,253	0,108
U	10,1	-1,278	11,397	0,024	0,008	-1,519	11,638	0,265	0,089
V	6,85	-1,261	8,113	0,017	0,008	-1,507	8,359	0,263	0,105
W	6,57	-1,246	7,821	0,007	0,009	-1,494	8,069	0,255	0,123
X	4,52	-1,246	5,771	0,012	0,008	-1,492	6,017	0,258	0,106
Т	12,3	-1,275	13,607	0,009	0,006	-1,516	13,848	0,250	0,075
		_	_						

Tabla 42: Refinamiento del modelo OSU91.

Al igual que en el modelo global DMA, los resultados obtenidos para la función de 4 parámetros son aceptables, mientras que para la de 5 parámetros no fueron muy buenos, observándose diferencias del orden de los 25 cm.

4	PROM.	0,014
	PROM (V.A.)	0,016
PARAM.	MAX.	0,074
	MIN.	0,001

Ŋ	PROM	0,253
PARAM.	PROM (V.A.)	0,253
	MAX.	0,309
	MIN.	0,223

Tabla 43: Estadística de los modelos creados a partir del OSU91

4.4.3 Testeo de los modelos

Con los mismo tres puntos de control con que se trabajó anteriormente, se hizo un testeo de los nuevos modelos, dando resultados aceptables en el caso del modelo de 4 parámetros, no así para el de 5 parámetros con el cual no se puede trabajar:

	Nivel	ΔNOSU-4P	OSU	MOSU-4P	DIF	ΔNOSU-5P	MOSU-5P	DIF
SGMM	13,710	-1,294	12,429	13,723	0,013	-1,527	13,956	0,246
Ν	12,022	-1,243	10,786	12,029	0,007	-1,485	12,271	0,249
BA	4,654	-1,189	3,504	4,693	0,039	-1,429	4,933	0,279

Tabla 44: Testeo con puntos de control

Autores: Jaime Betancur, Antonio Villaluenga

4.4.4 Estimación del error en los modelos

MOSU-4P

Para este modelo los resultados no fueron aceptables, encontrándose que en más del 74 % del área las diferencias son inferiores a los 2 cm, sin embargo existe un porcentaje relativamente alto en que los errores son mayores, por lo que no es aconsejable su aplicación.

Intervalo (m)	Área (m²)	Porcentaje
±0,005	3651357	22,53 %
\pm 0,005 a \pm 0,015	6236584	38,47 %
± 0,015 a ± 0,020	2244610	13,85 %
\pm 0,020 a \pm 0,030	2785893	17,19 %
0,030 a 0,050	968183	5,97 %
0,050 a 0,074	323327	1,99 %

Tabla 45: Estimación de las diferencias con las cotas oficiales (MOSU-4P)

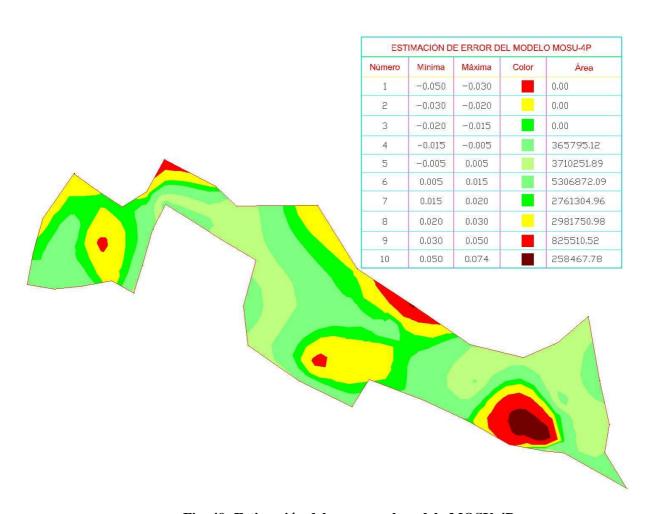


Fig. 49: Estimación del error en el modelo MOSU-4P

MOSU-5P

Este modelo no es aplicable debido a las diferencias existentes, las cuales superan los 25 cm para gran parte del área..

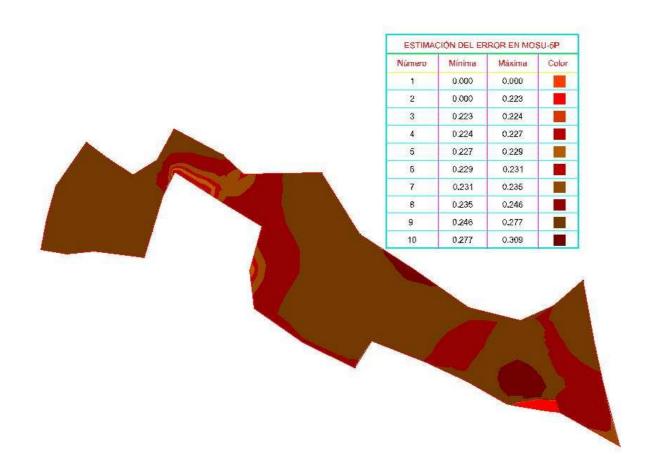


Fig. 50: Estimación del error en el modelo MOSU-5P

4.4.5 Testeo de desniveles entre puntos de control

Nuevamente se testearon los desniveles, entre los puntos de control y se realizó una comparación con las cotas oficiales. Como ocurre en el modelo anterior las diferencias de desniveles en cada uno de los modelos, no difieren mucho de las obtenidas entre cotas oficiales, las diferencias grandes surgen cuando se comparan alturas absolutas.

Modelo OSU-4P:

Puntos	Oficial	MOSU-4P	Desniveles	Nivel	MOSU-4P	Diferencias
SGMM	13,710	13,737	SGMM - N	-1,688	-1,694	0,006
N	12,022	12,042	N - BA	-7,368	-7,336	-0,032
BA	4,654	4,706	BA - SGMM	9,056	9,030	0,026

Tabla 46: Testeo de los desniveles con los puntos de control (MOSU-4P).

Modelo MOSU-5P:

Puntos	Oficial	MOSU-5P	Desniveles	Nivel	MOSU-5P	Diferencias
SGMM	13,710	13,956	SGMM - N	-1,688	-1,685	-0,003
N	12,022	12,271	N - BA	-7,368	-7,338	-0,030
BA	4,654	4,933	BA - SGMM	9,056	9,023	0,033

Tabla 47: Testeo de los desniveles con los puntos de control (MOSU-5P).

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA **DICIEMBRE 2009**

4.5 – Modelo del SGM: URUGEOIDE 2007

Como parte final de este trabajo, se realizó un estudio acerca de los resultados obtenidos mediante la aplicación del modelo de transformación de alturas calculado por el Servicio Geográfico Militar.

El Servicio Geográfico Militar con la disponibilidad de nuevos datos gravimétricos y principalmente del terreno, a través de la misión satelital SRTM, así como nuevos modelos geopotenciales y de anomalías aire libre en el mar, justificaron la decisión de determinar un nuevo modelo geoidal para Uruguay, que sustituyera el anterior modelo Urugeoide 2000.

El UruGeoide-2007, resultó de la combinación del modelo geopotencial GGM02C, datos gravimétricos terrestres y marinos, así como datos del modelo digital de elevaciones SRTM. La estrategia de cálculo consistió en calcular en primer lugar un cuasi-geoide para después obtener el modelo geoidal. Con esto se dispone de dos modelos de transformación de altitudes (para obtener tanto altitudes normales como ortométricas) y se contribuye con las discusiones de la adopción de un nuevo sistema de altitudes para el país, acorde a lo recomendado por el proyecto SIRGAS. La precisión absoluta del modelo geoidal obtenido es de 2 cm, usándose 50 puntos GPS sobre puntos fijos de nivelación para la adaptación del modelo al Datum Vertical del cero Oficial materializando por la referencia del Cabildo, siendo su uso libre para la comunidad a través de la página web del SGM.

Descripción de los datos usados:

1) Terreno

el Fue utilizado como base modelo numérico de elevaciones SRTM (http://seamless.usgs.gov/), con resolución de 30 m proporcionado por el NGA en el siguiente encuadramiento geográfico: - Latitud de -36.0° a -28.5°

-Longitud de 299.5 ° a 308.0°

2) Batimetría

Fue usado el modelo DNSC05 (www.spacecenter.dk), con resolución de 2'. Fueron seleccionados los datos batimétricos en el área del encuadre geográfico anterior.

3) Gravimetría

El archivo de datos de gravedad se formó con las siguientes informaciones:

	Datos	País	Fuente de información
1	2391	URU	SGM, 2007
2	2976	BRA	Blitzkow, D. 1999
3	629	ARG	Bureau Gravimétrico Internacional, 1999
4	1117	ARG	Blitzkow, D. 1999
5	72	ARG	Wenzel, G., 1999
6	1096	ARG	Lauria, 2007
7	152	BRA	IBGE, 2007
Total	8433		

4) Anomalías aire-libre y Bouguer

Las anomalías aire-libre y Bouguer simple, en el sistema geodésico WGS84, fueron calculadas usando el programa ban_anom.for. Se efectuó la corrección atmosférica, de acuerdo con la recomendación de la AIG y usando la fórmula:

corrección = $0.8658 - 9.727e-05 \times H + 3.482 e-9 \times H$

En el mar, fue usado el modelo de anomalías aire-libre KMS02 (<u>www.spacecenter.dk</u>) con resolución de 2' y un total de 9172 registros. De los archivos finales de cada anomalía se seleccionaron aquellas estaciones que se encontraban dentro del área de cálculo de modelo, de la siguiente forma:

Anomalías	Registros	Seleccionados
ANOM2007	8433	6931
KMS02	9172	9172
Total	17605	16103

5) Modelo geopotencial

El modelo usado fue el GGM02C, combinación del modelo EGM96 y el modelo GRACE02. El mismo fue obtenido del Centro Espacial Dinamarqués (<u>www.spacecenter.dk</u> <u>y Forsberg, 2007</u>).

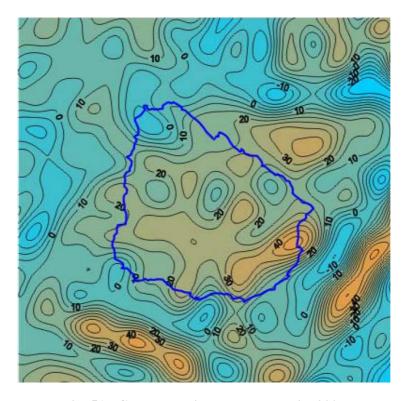


Fig. 51: Comportamiento del Urugeoide2007

4.5.1 Diferencias entre cotas oficiales y cotas obtenidas a partir del Urugeoie2007

Al igual que para los modelos globales, se aplicó el modelo Urugeoide2007 a las alturas elipsoidales, obteniéndose para cada punto una altura ortométrica que se compara con la cota oficial:

Nombre	Ondulación UR2007	Altura Ort. UR2007	Cotas Oficiales	Diferencia UR2007-Oficial
SGMP	15,100	7,800	7,810	0,010
AN	15,110	3,690	3,706	0,016
AO	15,110	2,000	2,027	0,027
AP	15,120	2,420	2,436	0,016
AQ	15,120	2,100	2,129	0,029
AR	15,120	2,910	2,935	0,025
AS	15,130	5,400	5,422	0,022
AT	15,120	2,880	2,909	0,029
AU	15,110	4,230	4,235	0,005
AV	15,110	5,610	5,618	0,008
AW	15,120	3,870	3,812	-0,058
AX	15,120	5,160	5,101	-0,059
AY	15,120	5,410	5,384	-0,026
AZ	15,130	6,680	6,672	-0,008
AE	15,200	14,210	14,170	-0,040
Α	15,170	12,52	12,509	0,011
В	15,170	14,82	14,797	0,023
С	15,160	13,057	13,045	0,012
D	15,160	11,752	11,744	0,008
Е	15,170	10,18	10,180	0,000
F	15,160	3,106	3,083	0,023
G	15,150	2,629	2,605	0,024
Н	15,130	13,214	13,217	-0,003
I	15,150	13,207	13,170	0,037
J	15,150	8,161	8,138	0,024
K	15,130	4,584	4,571	0,013
L	15,130	5,42	5,437	-0,017
M	15,150	11,146	11,148	-0,002
0	15,150	5,738	5,717	0,021
Р	15,140	3,929	3,900	0,029
Q	15,140	2,704	2,681	0,023
AD	15,190	12,890	12,854	-0,036
AG	15,190	14,570	14,559	-0,011
AM	15,200	14,200	14,159	-0,041
AL	15,200	14,490	14,438	-0,052
AK	15,190	13,210	13,184	-0,026
AJ	15,180	13,470	13,466	-0,004
Al	15,180	14,870	14,857	-0,013
AH	15,180	15,150	15,143	-0,007
AC	15,200	11,280	11,214	-0,066
AB	15,200	6,840	6,794	-0,046
AA	15,190	6,790	6,726	-0,064
Z	15,190	7,080	7,046	-0,034

Autores: Jaime Betancur, Antonio Villaluenga

Υ	15,190	10,540	10,504	-0,036
R	15,210	13,400	13,355	-0,045
S	15,190	14,480	14,405	-0,075
U	15,210	11,440	11,373	-0,067
V	15,210	8,160	8,096	-0,064
W	15,210	7,870	7,814	-0,056
X	15,200	5,820	5,759	-0,061
Т	15,200	13,650	13,598	-0,052

Tabla 48: Aplicación del modelo Urugeoide2007 y diferencia con cotas oficiales.

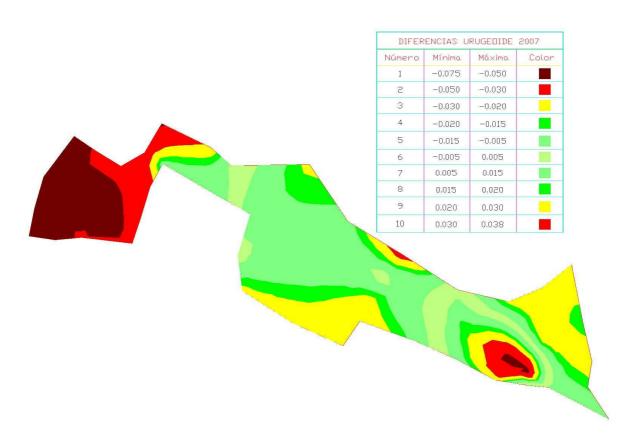


Fig. 52: Superficie comparativa entre el Urugeoide 2007 y cotas oficiales

4.6.- Comparación relativa de los modelos

Finalmente, comparando las diferencias de nivel obtenidas por cada modelo global sin refinar se obtuvieron los siguientes resultados con relación a la distancia:

	HASTA 500m		500m- 1000m			DESDE 1000m			
MODELO	Prom(VA)	Máx.	Mín.	Prom(VA)	Máx.	Mín.	Prom(VA)	Máx.	Mín.
EGM96	0,016	0,070	0,000	0,014	0,059	0,000	0,018	0,054	0,001
DMA	0,015	0,075	0,000	0,015	0,070	0,001	0,022	0,045	0,004
OSU91-A	0,015	0,067	0,000	0,013	0,054	0,001	0,014	0,051	0,005
EGM08	0,015	0,073	0,000	0,013	0,069	0,001	0,014	0,043	0,000
SGM	0,017	0,066	0,001	0,015	0,039	0,000	0,012	0,040	0,001

Tabla 49: Diferencias de Δh de los modelos globales y los oficiales

5) CONCLUSIONES:

Una vez realizado el estudio sobre el comportamiento de los Modelos Geoidales Globales, se pudo concluir que los mismos resultan, en menor o mayor medida, compatibles para la determinación de diferencias de alturas a partir de datos GPS. Sin embargo, para obtener precisiones en la determinación absoluta de las cotas oficiales, los modelos nos son suficientes por sí solos, se hace necesario realizar un refinamiento de los mismos.

Del refinamiento de los modelos se obtuvo una serie de resultados que muestran claramente el comportamiento de cada modelo refinado respecto a las diferencias entre las cotas modeladas y las cotas oficiales, y que se incluyen en la siguiente tabla:

		ME96-4P	ME96-5P	ME08-4P	ME08-5P	MDMA-4P	OSU-4P
PTS. FIJOS	Δh (Promedio)	-0,001	-0,004	-0,001	-0,004	0,027	0,014
	$ \Delta h $ (Promedio)	0,013	0,013	0,014	0,014	0,027	0,016
	Δh Máx.	0,064	0,058	0,059	0,052	0,088	0,074
	Δh Mín.	0	0	0	0,001	0	0,001
ΞE	1-21005R	-0,02	-0,01	-0,03	-0,011	0,027	0,013
STEO	N	-0,006	-0,008	-0,008	-0,008	0,02	0,007
	BA	0,011	0,008	0,024	0,022	0,052	0,039
₽	-0,005 a 0,005	38%	39%	38%	34%	1%	23%
AREAS	-/+0,005 a -/+0,015	48%	41%	44%	41%	15%	38%
_	-/+ 0,015 a -/+ 0,02	7%	11%	10%	12%	15%	14%
ESTIMADAS	-/+ 0,02 a -/+ 0,03	4%	7%	5%	11%	36%	17%
	-/+ 0,03 a -/+0,05	2%	2%	2%	2%	29%	6%
	-/+0,05 a -/+ 0,07	1%	0%	0%	0%	4%	2%

De estos valores se desprende que al momento de utilizar estos modelos refinados es aconsejable optar por los modelos ME96-4P, ME96-5P, ME08-4P o ME08-5P. Sin embargo existe un área en particular dentro de la zona de estudio en la cual no se recomienda la utilización de estos modelos, dado que los valores que se obtienen presentan importantes diferencias con respecto a los puntos nivelados. Dicha área se encuentra en zonas aledañas a la planta de ISUSA, ubicada en lo que antiguamente era un bañado.

De la comparación relativa entre los modelos globales se deduce que mediante la aplicación de los mismos se obtuvieron muy buenos resultados, principalmente aquellos correspondientes al promedio de los valores de Δh , encontrándose estos en el entorno de los 1,5 cm. Si bien las diferencias mínimas corresponden a valores pequeños (en el entorno de los 0,1 cm.), existen valores pertenecientes al entorno de los 7 cm, que pueden significar una restricción a la hora de obtener las precisiones deseadas

Autores: Jaime Betancur, Antonio Villaluenga

Estudio y Refinamiento de Modelos Geoidales PROYECTO FINAL

FACULTAD DE INGENIERIA INSTITUTO DE AGRIMENSURA **DICIEMBRE 2009**

En cuanto a la aplicación del modelo Urugeoide 2007, cabe destacar que en general se obtuvieron buenos resultados, similares a los obtenidos a partir de los modelos EGM-96 y EGM-08, presentando el inconveniente de que para dos zonas, particularmente extensas, las diferencias entre cotas modeladas y oficiales superan los límites de tolerancia.

Finalmente, se puede decir que los modelos realizados, especialmente los derivados del EGM-96 y el EGM-08, permiten la obtención de alturas en un sistema local con un nivel de precisión que permite su aplicación para el trabajo requerido, en este caso las obras de saneamiento para la zona.

Cabe señalar que los resultados obtenidos para todos los modelos se pueden mejorar mediante la inclusión de mediciones gravimétricas a la hora de realizar las correcciones correspondientes a la gravedad, en el presente estudio no fue posible tal tarea al no disponerse de un instrumento (gravímetro) para tal fin. Queda entonces propuesto un posterior estudio que incluya dichas mediciones, para poder realizar una comparación con el presente trabajo y que permita además la posible obtención de mayores precisiones en la determinación de alturas.

6) BIBLIOGRAFIA:

- 1. FAURE, J. "Nivelación GPS sobre la Red CDM de Montevideo- Refinamiento del estudio del comportamiento del modelo geoidal EGM96 en el Departamento de Montevideo". Universidad de la República- Facultad de Ingeniería. Montevideo- 2004.
- SUBIZA, W. "Un geoide de precisión para Uruguay. Informe del proyecto URUGeoide 2000" Universidad Federal del Paraná. Curitiba, Paraná Brasil -1960
- 3. SERVICIO GEOGRAFICO MILITAR. "Cálculo de un nuevo modelo geoidal para Uruguay (UruGeoide - 2007)". Montevideo -2007.
- 4. PALVIS, N., HOLMES, S., KENYON S., FACTOR, J. "An Earth Gravitational Model to Degree 2160: EGM 2008". National Geospatial - Intelligence Agency. Vienna, Austria-2088
- SÁNCHEZ, L., MARTÍNEZ W. "Avances en el procesamiento unificado de las redes verticales involucradas en SIRGAS". Reunión Sirgas. Montevideo – 2008
- NÚÑEZ, A. "Determinación de un Geoide de precisión en áreas de pequeñas extensión. Aplicación en el parque nacional de Doñana". Departamento de ingeniería del terreno cartográfica y geofísica. Universidad Politécnica de Cataluña. España - 2006
- 7. HOYER, M., WILDERMANN, E., SUÁREZ H, HERNÁNDEZ, J. "Modelo Geoidal combinado para Venezuela (MGCV04)" Venezuela – 2004
- 8. VANÍCEK, P., SANTOS, M., TENZER, R., HERNÁNDEZ-NAVARRO, A. "Algunos aspectos sobre alturas ortométricas y normales". Portugal – 2003
- 9. SÁNCHEZ, L., "Determinación de la superficie vertical de referencia para Colombia" Techinische Universität Dresden - Institut für Planetare Geodäsie - Theoretische und Physikaische Geodäsie. Dresde - 2003
- 10. ÁVALOS, D., "El geoide para el área mexicana y sus aplicaciones". Revista de información y análisis núm. 20, 2002.
- 11. PACINO, M., FONT, G., TOCHO, C., BLITZKOW, D. "Nuevos resultados en la determinación del modelo geoidal de argentina". Buenos Aires-2001.
- 12. BENAVIDEZ SOSA, A.: "Fundamentos de Geodesia Física"

ANEXO I

(Curvas de Nivel)

ANEXO II

(Superficies)